| 研究生: |
胡智瑋 Hu, Chih-Wei |
|---|---|
| 論文名稱: |
時間序列分析法於環境振動模態參數識別之應用 Modal Parameter Identification Using Ambient Vibration Data By Time Series Method |
| 指導教授: |
江達雲
Chiang, Dar-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 時間序列分析 、環境振動 、模態參數識別 |
| 外文關鍵詞: | Modal Parameter Identification, Ambient Vibration, Time Series Method |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構系統的動態特性可藉由其自然頻率、阻尼比及模態振形加以描述,而一般模態參數識別法須同時利用激勵及響應資料來識別模態參數。本文考慮當線性結構系統在環境振動下,假設激勵信號為非定常過程,以時間序列模型模擬,並轉換至離散狀態空間模式以得到狀態系統矩陣,透過此系統矩陣求得結構系統之自然頻率、阻尼比與模態振形。許多工程結構在環境振動作用下,僅能獲得其響應資料,將響應訊號經隨機遞減法處理後,隨機遞減訊號與脈衝響應或自由振動衰減響應有相同之數學形式,進而利用亞伯拉罕時域模態參數識別法計算出結構系統之自然頻率、阻尼比與模態振形。最後經由數值模擬,比較時間序列分析法與Ibrahim時域模態參數識別法識別結果,並且驗證本文所探討的方法之可行性。
Dynamical systems can be characterized by their modal parameters, which include natural frequencies, damping ratios and mode shapes. Identification of system characteristics is usually accomplished using both input and output data from the structural system. It can be shown that the non-stationary input signals modeled as an equivalent state-space model derived from measured input and output data is transformed from the time series model. The structural modal parameters can be estimated accurately using the equivalent state-space model form the time series models. In addition, the natural frequencies, damping ratios and mode shapes of structural system can be evaluated directly by the state system matrix. In many cases, however, only output measurements are possible for structures under ambient conditions. To used the Random Decrement Technique which auto- and cross-random decrement vibration signatures of the response of a linear structure are in the same mathematical form as free vibration of the structure. The objective of this thesis is to develop a modal parameter identification method by using time domain identification techniques with the response randomdec signatures treated as free vibration data. By means of being compared Time Series Method with Ibrahim Time Domain method, we confirm the applicability of the modal parameter identification method proposed through numerical simulation.
[1] Abdel Wahab, M. M., and De Roeck, G., “An effective Method for
Selecting Physical Modes by Vector Autoregressive Models”,
Mechanical System and Signal Processing 1999 13(3), pp. 449-474.
[2] Asmussen, J.C., Ibrahim, S. R. and R.Brincker, “Random
Decrement and Regression Analysis of Bridges Traffic Responses”,
Proceedings of the 14th International Model Analysis Conference,
Vol. 1, 1996, pp. 453-458.
[3] Bathe, K. J., “Finite Element Procedures in Engineering Analysis”,
Prentic-Hall, 1982, Chap. 9.
[4] Bedewi, N.E., “The Mathematical Foundation of the Auto and
Cross-random Decrement Techniques and the Development of a
System Identification Technique for the Detection of Structural
Deterioration”, Ph. D Thesis, University of Maryland College Park,
1986.
[5] Carne, T. G., Lauffer, J. P., Gomez, A. J. and Benjannet, H. “Modal
Testing an Immense Flexible Structure Using Natural and Artificial
Excitation”, The International Joural of Analytical and
Experimental Modal Analysis, The Society of Experimental
Mechanics, October 1988, pp. 117-122.
[6] Code, H. A. Jr., “Methods and apparatus for measuring the damping
characteristics of a structures by the random decrement technique”,
United States Patent No. 3, 620, 069, 1971.
[7] Deblauwe, R., Brown, D. L., and Allemang, R. J., “The
Polyreference Time Domain Technique”, Proceedings 5th Int.
Modal Analysis Conference, Orlando, Fla., 1987, pp. 832-845.
[8] Ewins, D. J., “Modal Testing: Theory and Practice”, Research
Studies Press, 1984.
[9] Hung, C. F. and Ko W. J., “Identification of Modal Parameters from
Measured Output Data Using Vector Backward Autoregressive
Model”, Journal of Sound and Vibration, 256(2), 2002, pp. 249-270.
[10] Hung, C. F. and Ko, W. J. and Peng, Y. T. “Identification of Modal
Parameters from Measured Input and Output Data Using Vector
Backward Autoregressive with exogeneous Model”, Journal of
Sound and Vibration, 276, 2004,pp. 1043-1046.
[11] Ibrahim, S. R. ,Brincker, R. and Asmussen, J. C., “Modal Parameter
58
Identification from Responses of General Unknown Random
Inputs”, Proceedings of the 14th International Model Analysis
Conference, Vol. 1, 1996, pp. 446-452.
[12] Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direst
Identification of Vibration Parameters from Free Response”, Shock
and Vibration Bulletin, Vol. 47, Pt. 4, Sept. 1977, pp. 183-198.
[13] Ibrahim, S. R. and Mikulcik, E. C., “The experimental
Determination of Vibration Parameters from Time Responses”,
Shock and Vibration Bulletin, Vol. 46, Pt. 5, Aug. 1976, pp.
183-198.
[14] Ibrahim, S. R. and Pappa, R. S., “ Large Survey Testing Using the
Ibrahim Time Domain (ITD) Model Identification Algorithm, ”
Journal of Spacecraft and Rockets, Vol. 19, Sept.-Oct. 1982, pp.
459-465.
[15] Ibrahim, S. R., “Random Decrement Technique for Modal
Identification of Structures”, Journal of Spacecraft and Rockets,
Vol. 140, Nov. 1977, pp. 696-700.
[16] Ibrahim, S. R., and Fullekrug, U., 1990, “Investigation into Exact
Normalization of Incomplete Complex Modes by Decomposition
Trasformation”, Proceedings of 8th International Modal Analysis
Conference, Kissimmee, FL, pp. 205-212.
[17] Ibrahim, S. R., Asmussen, J. C. and Brincker, R., “Statistical Theory
of the Vector Random Decrement Technique”, Journal of Sound and
Vibration, Vol. 226, 1999, pp. 329-344.
[18] Ibrahim, S. R., Asmussen, J. C. and Brincker, R., “ Vector
Triggering Random Decrement Technique for Higher Identification
Accuracy”, Proceedings of the 15th International Model Analysis
Conference, Vol. 1, 1997, pp. 502-509.
[19] Ibrahim, S. R.,“ Computation of Normal Modes from Identified
Complex Modes”, AIAA, Vol. 21, No. 3, 1983, pp. 446-451.
[20] James, G. H., Carne. T. G. and Lauffer, J. P.,“ The Natural Excitation
Technique for Modal Parameter Extraction from Operating Wind
Yurbines” SAND92-1666. UC-261, Sandia National Laboratories,
1993.
[21] Juang, J, -N. and Pappa, R .S., “An Eigensystem Realization
Algorithm for Modal Parameter Identification and Modal
Reduction”, Jounal of Guidance and Control Dynamics, AIAA, Vol.
8, No. 5, 1985, pp. 620-627.
59
[22] Juang, J, -N., Cooper, J. E. and Wright, J. R., “An Eigensystem
Realization Algorithm Using Data Correlations (ERA/DC) for
Modal Parameter Identification”, Control-Theory and Advanced
Technology, Vol. 4, No. 1, 1988, pp. 5-14.
[23] Kennedy, S. R. and Pancu, C. D. P. “Use of Vectors in Vibration
Measurement and Analysis”, Journal of Aeronautics Sciences, Vol.
14, No. 11, 1974, pp. 603-625.
[24] Kirshenboim, J., “Real vs. Complex Mode Shapes”, Proceeding of
5th International Modal Analysis Conference, London, England,
1987, pp. 1594-1599.
[25] Li, C. S. and Ko, W. J., “The Identification of System Modal
Parameter og Ship Hull Girder Vbration in the Vertical Plane by the
Sea Trial Time Series”, Processing of IMAC-IV, Vol. 11, 1986,
pp.1011-1019.
[26] Li, C. S. and Ko, W. J., “Vector Autoregressive Modal Analysis
With Application to Ship Structures”, Journal of Sound and
Vibration, 1993, pp.1-15.
[27] Newland, D.E., “An Introduction to Random Vibrations and
Spectral Analysis”, 1975, Chap. 7.
[28] Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach
to Modal Analysis Via State Space,” Transactions ASME, Journal of
Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp.
132-137.
[29] Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach
to Modal Analysis, Part I: Theory”, Journal of Sound and Vibration,
Vol. 122, No. 3, 1988, pp. 413-422.
[30] Pandit, S. M. and Wu, S. M., “Time Series and System Analysis
with Applications”, John Wiley & Sons, Inc., New York, 1983.
[31] Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim
Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol.
51, Pt. 3, 1981, pp. 43-72.
[32] Shinozuka, M., “Random Process with Evolutionary Power”, J.
Eng. Mech. Div., ASCE, Vol. 96, EM4, 1970, pp. 543-545.
[33] Shinozuka, M., “Simulation of Multivariate and Multidimensional
Random Processes”, Journal of the Acoustical Society of America,
Vol. 49, No. 1. 1971, pp. 357-367.
[34] Smail, M., Thomas, M and Lakis, A. A., “Assessment of Optimal
ARMA Model Orders for Model Analysis”, Mechanical System and
60
Signal Processing, Vol. 13, No. 5, 1999, pp. 925-941.
[35] Smail, M., Thomas, M and Lakis, A. A., “ARAM Model for Model
Analysis: Effect of Model Orders and Sampling Frequency”,
Mechanical System and Signal Processing Vol. 13, No. 6, 1999, pp.
925-941
[36] Soderstrom T. and Fan, H. “Least Squares Parameter Estimation of
Continuous Time ARX Models from Discrete-Time Data”, IEEE
transactions on Automatic Control, 1997,Vol. 42.
[37] Vandiver, J. K., Dunwoody, A. B., Campbell, R. B. and Cook, M. F.,
“A Mathematical Basis for the Random Decrement Vibration
Signature Analysis Technique”, Journal of Mechanical Design, Apr.
1982, Vol. 104.
[38] Vold, H. and Rocklin, G. F. “The Numerical Implementation of a
Multi-Input Modal Estimation Method for Mini-Computers”,
International Modal Analysis Conference Proceedings, Nov. 1982.
[39] Ward Heylen, Stefan Lammens and Paul Sas, “Modal Analysis
Theory and Testing, 2nd ed.”, Katholieke Universiteit Leuven,
Faculty of Engineering, Dept. of Mechanical Engineering, Division
of Production Engineering, Machine Design and Automation, 1998.
[40] Wei, M. L., Allemang, R. J. and Brown, D. L., “Real-Normalization
of Measured Complex Modes”, Proceedings of 5th International
Modal Analysis Conference, London, England, 1987, pp. 708-712.
[41] 林文祺、黃群堯、王傑兒, “鋼筋混凝土樑損壞之識別”, 結構工
程, Vo1. 13, No. 4, 1998, pp. 19-39.
[42] 林其璋、高雍超、王哲夫, “應用部份量測反應之結構系統識別”,
中國土木水利工程學刊, Vo1. 7, No. 3, 1995, pp. 307-316.
[43] 黃炯憲、葉錦勳、林憲忠、葉公贊, “隨機遞減法在微震量測之
應用-比例阻尼系統”, 國家地震工程研究中心研究報告編號:
NCREE-96-013, 1996.
[44] 詹啟鋒, “受環境振動之系統參數識別”, 碩士論文, 國立成功大
學航空太空工程學研究所, 2000.
[45] 鄭銘勢, “時域模態參數識別法之應用”, 碩士論文, 國立成功大
學航空太空工程學研究所, 1997.
[46] 林章生, “相關函數法於非定常環境振動之模態參數識別研究”,
碩士論文, 國立成功大學航空太空工程學研究所, 2004.
[47] 曹松華, “隨機遞減法於非定常環境振動模態參數識別之應用”,
碩士論文, 國立成功大學航空太空工程學研究所, 2004.