簡易檢索 / 詳目顯示

研究生: 林泰言
Lin, Tai-Yen
論文名稱: 硫磷四芽配位基之鉛二價、銅一價及鐵二價錯合物的合成鑑定
Syntheses and Characterization of Lead(II), Copper(I) and Iron(II) Complexes with tetradentate diphosphine-dithiolate ligand derivatives.
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 63
中文關鍵詞: 磷硫配位基銅硫錯合物鉛硫錯合物鐵硫錯合物
外文關鍵詞: thiolatophosphine ligands, copper thiolate complexes, lead(II) complexes, iron(II) carbonyl complexes
相關次數: 點閱:230下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大部分生物酵素的催化中心是由金屬離子和氮、硫配位基組成,如固氮酵素、氫化酵素、氧化亞氮還原酶。為了瞭解這些生物酵素的反應性質,我們實驗室開發了一系列的磷硫配位基來合成金屬催化中心的彷生模型。在此論文中將探討四芽磷硫配位基(P2S2)及其仿生金屬錯合物。
    此研究的第一部分為H2[P2S2”]的合成,並利用核磁共振光譜來鑑定產物
    在第二部分中,將探討以P2S2”為配位基的鉛二價錯合物,Pb(P2S2”) (1)及[Pb(P2S2”)]2·[Pb2(P2S2”)2] (2),其固態、液態之磷-31與鉛-207核磁共振光譜。Pb(P2S2”) (1)為單鉛錯化合物包含一個P2S2”配位基組成。[Pb(P2S2”)]2·[Pb2(P2S2”)2] (2)由單鉛錯化合物以及其二聚體共結晶組成。這兩個化合物是由我們實驗室學長發展出來並鑑定。
    在第三和第四部份中,P2S2”和六個銅一價離子所形成的錯合物Cu3(P2S2”)(Im)(TMSPhS)]2 已被純化並以X光單晶繞射儀及其他光譜學鑑定;另外,以P2S2”及P2S2*兩個配位基所合成的單鐵氫化酵素模型也由光譜鑑定並與文獻比較。

    Our laboratory has developed a series of phosphine-thiolate ligands in order to understand metal thiolate chemistry. It is anticipated the information provided from this study can bring insights for understanding the metal-sulfur chemistry in biological systems as well as in toxicity. In this thesis, diphosphine-dithiolate ligand (P2S2) was utilized for exploring metal chemistry. 31P, 207Pb NMR in solid and solution state were applied on two lead(II) compelexes, Pb(P2S2”) (1) and [Pb(P2S2”)]2·[Pb2(P2S2”)2] (2). Pb(P2S2”) (1) is a monolead(II) species binding with a P2S2” ligand. [Pb(P2S2”)]2·[Pb2(P2S2”)2] contains two monolead(II) units and a dimeric unit. These compounds were synthesized and characterized in our laboratory before.
    In addition, a hexacopper(I) complex of P2S2” ligand, [Cu3(P2S2”)(Im)(TMSPhS)]2 , has been isolated and characterized by X-ray crystallography and spectroscopies. Finally, iron carbonyl chemistry with P2S2” ligand was also been explored. The isolated compound was identified as cis-Fe(P2S2”)(CO)2 by comparing the spectroscopies with the other analogue cis-Fe(P2S2*)(CO)2, that is synthesized and well characterized in our laboratory.

    Abstract I 中文摘要 II 誌謝 III List of Contents IV List of Schemes VII List of Tables VIII List of Figures IX Abbreviations XII Chapter 1. Introduction 1 1-1. Sulfur-rich biological enzymes 1 1-2. Lead thiolated complexes 1 1-2-1. Example of lead thiolate complexes 2 1-2-2. Lead(II)-thiolate complexes ligated by P2S2” 3 1-3. Hydrogenase 4 1-3-1. Example of the [Fe]-hydrogenase active site models 6 1-4. Coppers in biological systems 8 1-4-1. Example of copper complexes 10 Chapter 2. Results and Discussion 13 2-1. Synthesis and characterization of H2[P2S2”] ligand 13 2-1-1. The overall description of P2S2” ligand synthesis. 13 2-1-2. Synthesis of Li2[PhPCH2CH2PPh]•(THF)4 14 2-1-3. Synthesis of ClPhPC2H4PPhCl 14 2-1-4. Synthesis of 2-trimethylsilyl-thiophenol 15 2-1-5. Synthesis of H2[P2S2”] ligand 15 2-1-6. Nuclear Magnetic Resonance Spectrum of H2[P2S2”] 16 2-2. NMR studies of Pb(P2S2”) (1) and [Pb(P2S2”)]2·[Pb2(P2S2”)2] (2) 18 2-2-1. Synthesis of Pb(P2S2”) (1) and [Pb(P2S2”)]2·[Pb2(P2S2”)2] (2) 18 2-2-2. Elemental analysis 19 2-2-3. Analysis of chemical environment of the P atoms in Pb(P2S2”) unit 20 2-2-4. Analysis of chemical environment of Pb atoms in 1 21 2-2-5. Analysis of chemical environment of P and Pb atoms in complex 2 22 2-2-6. 31P Nuclear Magnetic Resonance Spectrum analysis of complexes 1 and 2 23 2-2-7. 207Pb Nuclear Magnetic Resonance Spectrum analysis of complex 1 and 2 27 2-2-8. Summary for NMR studies of complex 1 and 2 31 2-3. Synthesis and characterization of Complex 3: [Cu3(P2S2”)(Im)(TMSPhS)]2 (3) 32 2-3-1. Elemental analysis 33 2-3-2. X-ray structural determination of [Cu3(P2S2”)(Im)(TMSPhS)]2 33 2-3-3. UV-Vis spectrum of complex 3 40 2-3-4. NMR Spectrum of complex 3 41 2-3-5. The electrochemical study of complex 3. 42 2-4. Reaction of [P2S2”]2- and [P2S2*]2- with Fe(CO)5 44 2-4-1. NMR studies for reaction of [P2S2”]2- and [P2S2*]2- with Fe(CO)5 45 2-4-2. IR spectrum for reaction of [P2S2”]2- and [P2S2*]2- with Fe(CO)5 48 Chapter 3. Conclusions 50 Chapter 4. Experiments and Instruments 51 4-1. General procedures 51 X-ray Crystallographic Data Collection and Refinement of the structures 51 Elemental Analysis 51 Nucleic Magnetic Resonance Spectroscopy 51 Infrared Spectroscopy 52 Uv-Vis Spectroscopy 52 Cyclic Voltammetry 52 4-2. Synthesis 52 Li2[PhPCH2CH2PPh]•(THF)4 52 ClPhPCH2CH2PPhCl 53 2-trimethylsilyl-thiophenol 53 H2[P2S2’’] ligand 53 Cu(CH3CN)4PF6 54 Pb(P2S2”)•CH2Cl2•0.5MeOH (1) and [Pb(P2S2”)]2·[Pb2(P2S2”)2] ]•4CH2Cl2 (2) 54 [Cu3(P2S2”)(Im)(TMSPhS)]2•4CH2Cl2•2EtOH (3) 54 Reference 55 Appendix A 58 Appendix B 60

    1. Tokar, E. J.; Diwan, B. A.; Waalkes, M. P., Early life inorganic lead exposure induces testicular teratoma and renal and urinary bladder preneoplasia in adult metallothionein-knockout mice but not in wild type mice. Toxicology 2010, 276 (1), 5-10.
    2. Abu-Dari, K.; Hahn, F. E.; Raymond, K. N., Lead sequestering agents. 1. Synthesis, physical properties, and structures of lead thiohydroxamato complexes. Journal of the American Chemical Society 1990, 112 (4), 1519-1524.
    3. Bressler, J.; Kim, K.-a.; Chakraborti, T.; Goldstein, G., Molecular Mechanisms of Lead Neurotoxicity. Neurochemical Research, 1999, 24 (4), 595-600.
    4. Bridgewater, B. M.; Parkin, G., Lead Poisoning and the Inactivation of 5-Aminolevulinate Dehydratase as Modeled by the Tris(2-mercapto-1-phenylimidazolyl)hydroborato Lead Complex, {[TmPh]Pb}[ClO4]. Journal of the American Chemical Society 2000, 122 (29), 7140-7141.
    5. Andersen, R. J.; diTargiani, R. C.; Hancock, R. D.; Stern, C. L.; Goldberg, D. P.; Godwin, H. A., Characterization of the First N2S(alkylthiolate)lead Compound:  A Model for Three-Coordinate Lead in Biological Systems†. Inorganic Chemistry 2006, 45 (17), 6574-6576.
    6. Barry, B. M.; Stein, B. W.; Larsen, C. A.; Wirtz, M. N.; Geiger, W. E.; Waterman, R.; Kemp, R. A., Metal Complexes (M = Zn, Sn, and Pb) of 2-Phosphinobenzenethiolates: Insights into Ligand Folding and Hemilability. Inorganic Chemistry 2013, 52 (17), 9875-9884.
    7. Hong, R.-L., Development of tetradentate thiolatophosphine ligands and their metal complexes: Syntheses and Characterization of cadmium(II) and lead(II) complexes. 國立成功大學化學研究所碩士論文2013.
    8. Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E., Hydrogenases. Chemical Reviews 2014, 114 (8), 4081-4148.
    9. Yang, X.; Hall, M. B., Monoiron Hydrogenase Catalysis: Hydrogen Activation with the Formation of a Dihydrogen, Fe−Hδ−•••Hδ+−O, Bond and Methenyl-H4MPT+ Triggered Hydride Transfer. Journal of the American Chemical Society 2009, 131 (31), 10901-10908.
    10. Hiromoto, T.; Ataka, K.; Pilak, O.; Vogt, S.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Shima, S.; Ermler, U., The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Letters 2009, 583 (3), 585-590.
    11. Chen, D.; Scopelliti, R.; Hu, X., Synthesis and Reactivity of Iron Acyl Complexes Modeling the Active Site of [Fe]-Hydrogenase. Journal of the American Chemical Society 2010, 132 (3), 928-929.
    12. Melgarejo, D. Y.; Chiarella, G. M.; Koch, S. A. Synthetic analogs for the iron centers in Ni-Fe and the iron-sulfur cluster free hydrogenase enzymes. Abstracts of Papers; 234th National Meeting of the American Chemical Society, Boston, MA, United States, August 19-23, 2007; American Chemical Society: Washington, DC, 2007; http://oasys2.confex.com/acs/234nm/techprogram/P1116341.HTM.
    13. Wang, X.; Li, Z.; Zeng, X.; Luo, Q.; Evans, D. J.; Pickett, C. J.; Liu, X., The iron centre of the cluster-free hydrogenase (Hmd): low-spin Fe(II) or low-spin Fe(0)? Chemical Communications 2008, (30), 3555-3557.
    14. Zumft, W. G., Biogenesis of the Bacterial Respiratory CuA, Cu-S Enzyme Nitrous Oxide Reductase. Journal of Molecular Microbiology and Biotechnology 2005, 10 (2-4), 154-166.
    15. Rosenzweig, A. C., Nitrous oxide reductase from CuA to CuZ. Nat Struct Mol Biol 2000, 7 (3), 169-171.
    16. Pomowski, A.; Zumft, W. G.; Kroneck, P. M. H.; Einsle, O., N2O binding at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase. Nature 2011, 477 (7363), 234-237.
    17. Houser, R. P.; Young, V. G.; Tolman, W. B., A Thiolate-Bridged, Fully Delocalized Mixed-Valence Dicopper(I,II) Complex That Models the CuA Biological Electron-Transfer Site. Journal of the American Chemical Society 1996, 118 (8), 2101-2102.
    18. Houser, R. P.; Halfen, J. A.; Young, V. G.; Blackburn, N. J.; Tolman, W. B., Structural Characterization of the First Example of a Bis(m-thiolato)dicopper(II) Complex. Relevance to Proposals for the Electron Transfer Sites in Cytochrome c Oxidase and Nitrous Oxide Reductase. Journal of the American Chemical Society 1995, 117 (43), 10745-10746.
    19. Ho, Y.-H.; Chang, M.-C.; Yu, K.-H.; Liu, Y.-H.; Wang, Y.; Cheng, Y.-C.; Chen, J.-T., CO2 fixation by dicopper(ii) complexes in hypodentate framework of N8O2. Dalton Transactions 2014, 43 (17), 6287-6290.
    20. Neuba, A.; Flörke, U.; Meyer-Klaucke, W.; Salomone-Stagni, M.; Bill, E.; Bothe, E.; Höfer, P.; Henkel, G., The Trinuclear Copper(I) Thiolate Complexes[Cu3(NGuaS)3]0/1+ and their Dimeric Variants [Cu6(NGuaS)6]1+/2+/3+ with Biomimetic Redox Properties. Angewandte Chemie International Edition 2011, 50 (19), 4503-4507.
    21. Huang, C.-M., Development of the Tetradentate Diphosphanyl-bisbenzenethiolate S, P, P, S ligand: Synthesis and Characterization of a Dicopper Complex with S, P, P, S ligand. 國立成功大學化學研究所碩士論文2014, 66, 20-21.
    22. Belle, C.; Rammal, W.; Pierre, J.-L., Sulfur ligation in copper enzymes and models. Journal of Inorganic Biochemistry 2005, 99 (10), 1929-1936.
    23. Gennari, M.; Pécaut, J.; DeBeer, S.; Neese, F.; Collomb, M.-N.; Duboc, C., A Fully Delocalized Mixed-Valence Bis-μ(Thiolato) Dicopper Complex: A Structural and Functional Model of the Biological CuA Center. Angewandte Chemie International Edition 2011, 50 (25), 5662-5666.
    24. Fernández, P.; Sousa-Pedrares, A.; Romero, J.; Durán, M. L.; Sousa, A.; Pérez-Lourido, P.; García-Vázquez, J. A., Synthesis and Structural Characterization of Cobalt, Nickel and Copper Phosphanylthiolato Complexes. European Journal of Inorganic Chemistry 2010, 2010 (5), 814-823.
    25. Van Koten, G.; Noltes, J. G.; Spek, A. L., Group IB organometallic chemistry : XXXVII. Complex forming reactions of polynuclear arylcopper compounds: Calk−P bond cleavage in 1,2-bis(diphenylphosphino)ethane (diphos) by (2-Me2NCH2C6H4)4Cu4 and crystal structure of [(C6H5)2PCu • diphos]2 • 2 C6H6. Journal of Organometallic Chemistry 1978, 159 (4), 441-463.
    26. Lyon, E. J.; Shima, S.; Boecher, R.; Thauer, R. K.; Grevels, F.-W.; Bill, E.; Roseboom, W.; Albracht, S. P. J., Carbon Monoxide as an Intrinsic Ligand to Iron in the Active Site of the Iron−Sulfur-Cluster-Free Hydrogenase H2-Forming Methylenetetrahydromethanopterin Dehydrogenase As Revealed by Infrared Spectroscopy. Journal of the American Chemical Society 2004, 126 (43), 14239-14248.
    27. Sadique, A. R.; Brennessel, W. W.; Holland, P. L., Reduction of CO2 to CO using Low-Coordinate Iron: Formation of a Four-Coordinate Iron Dicarbonyl Complex and a Bridging Carbonate Complex. Inorganic chemistry 2008, 47 (3), 784-786.
    28. Guo, Y.; Wang, H.; Xiao, Y.; Vogt, S.; Thauer, R. K.; Shima, S.; Volkers, P. I.; Rauchfuss, T. B.; Pelmenschikov, V.; Case, D. A.; Alp, E. E.; Sturhahn, W.; Yoda, Y.; Cramer, S. P., Characterization of the Fe Site in Iron−Sulfur Cluster-Free Hydrogenase (Hmd) and of a Model Compound via Nuclear Resonance Vibrational Spectroscopy (NRVS). Inorganic Chemistry 2008, 47 (10), 3969-3977.
    29. Takács, J.; Soós, E.; Nagy-Magos, Z.; Markó, L.; Gervasio, G.; Hoffmann, T., Synthesis and molecular structure of carbonyl derivatives of iron(II) thiolates containing nitrogen-donor ligands. Inorganica Chimica Acta 1989, 166 (1), 39-46.
    30. Liaw, W.-F.; Chen, C.-H.; Lee, G.-H.; Peng, S.-M., Iron Pyridine-2-thiolate Complexes:  Interconversion of [Fe0(CO)4(SC5H4N)]-, cis-[FeII(CO)2(SC5H4N)2], and [FeII(SC5H4N)3]. Organometallics 1998, 17 (11), 2370-2372.
    31. Mauro, A. E.; Casagrande Jr, O. L.; Nogueira, V. M.; Santos, R. H. A.; Gambardella, M. T. P.; Lechat, J. R.; Filho, M. F. J., Reaction of pentacarbonyliron with a nitrogen heterocycle. X-ray crystal structure of bis[(carbonyl)(quinoline-2-thiolate-N,S)]iron(II). Polyhedron 1993, 12 (3), 297-301.

    下載圖示 校內:2020-08-10公開
    校外:2020-08-10公開
    QR CODE