| 研究生: |
陳冠宇 Chen, Guan-Yu |
|---|---|
| 論文名稱: |
中孔洞金屬矽酸鹽材料的合成並應用於丙烯環氧化 Synthesis of Mesoporous Metal Silicate for Propene Epoxy Reaction |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 矽酸鈦 、矽酸鋯 、矽酸錫 、中孔洞氧化矽材料 、環氧化 |
| 外文關鍵詞: | titanium silicate, zirconium silicate, tin silicate, mesoporous silica, propene epoxidation |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是以有機模板合成金屬(Ti、Zr、Sn)矽酸鹽類,藉由有機模版明膠、聚乙二醇(PEG)、脂肪醇聚氧乙烯醚(AEO)當作金屬保護劑,可避免以共沉澱法製備時所造成的金屬聚集,還可以提供高比表面積,其中矽酸鈦材料也應用於催化丙烯環氧化反應,具有很好的轉換率及選擇性。
矽酸錫、矽酸鋯孔洞材料是利用矽酸鈉為氧化矽源並且分別調整到pH5.0與pH4.0後加入有機模板明膠使其水解縮合,再經由100oC水熱12小時分別可得到比表面積約439 m2g-1、613 m2g-1的孔洞材料,且經由DR-UV鑑定後也可確定金屬保有四配位的活性位,接著也利用了PEG以及AEO來取代原來的明膠,在矽酸錫的部分以PEG10000及AEO合成之材料從DR-UV分析會有金屬氧化物聚集的現象,而矽酸鋯以PEG10000、AEO合成之材料皆可獲得高分散度的孔洞材料,比表面積也比明膠合成的還要來的高分別為562 m2g-1、688 m2g-1。
第二部分為矽酸鈦孔洞材料的探討,明膠合成之孔洞材料經由pH值、明膠使用量、水熱時間、水熱溫度、段燒溫度的探討後,選出最佳化的參數,經由表面修飾後發現在pH7.0水熱100oC 16小時並且鍛燒750 oC的矽酸鈦材料應用於催化丙烯環氧化可以得到93.2%的轉換率且95.6%的選擇率,並且將界面活性劑換成PEG4000、AEO後一樣可以得到90.3%、94.8%的高轉換率以及95.2%、95.9%的選擇率。
The traditional methods for the synthesis of mesoporous metal (Ti, Zr, Sn) silicate result in the aggregation of the respective metal dioxide thereby leading to low surface area. To resolve this problem, the present-study uses biodegradable gelatin as an organic template, which disperses the metal species by chelation of the functional group, and the low price sodium silicate was used as silica source. The morphology, surface area, and composition of the prepared metal silicates characterized by IR, SEM and N2 adsorption desorption isothermal. IR spectroscopy reveals a peak at 960~970 cm-1 corresponding to bond of metal-O-Si. The DR-UV-vis spectroscopy provides evidence of well dispersed metal ions in the metal silicate. Moreover, the synthesized mesoporous titanium silicate is used to catalyze the epoxidation of propene with oxidant cumene peroxide. The results show a conversion of 94.5% and a selectivity of 95%. Thus, the present method has significant potential for cost-effective, economical and rapid synthesis of epoxidation compound in commercial factories.
參考文獻
1.T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature,1992, 359, 710-712.
2.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834-10843.
3.J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 2003, 42, 3146-3150.
4.A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
5.H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
6.V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
7.H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
8.J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
9.J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
10.Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414-+.
11.F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
12.Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 2000, 12, 206-+.
13.P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
14.C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
15.Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14.
16.Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
17.C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
18.S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392
19.N. Kroger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
20.E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543
21.T. F. Todros, Surfactants, Academic Press: London, 1984.
22.Esumi, Kunio, and Minoru Ueno. Structure-performance Relationships in Surfactants. 2nd ed. Vol. 122. New York: Marcel Dekker, 2003.
23.N. lsraelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
24.D. J. Mithchell, B. W. Ninham, J. Chem. Soc, Faraday, Trans. II, 1981, 77, 1264.
25.http://pubs.rsc.org/en/content/articlehtml/2014/md/c4md00085d
26.Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chemelka, F. Schuth, G. D. Stucky, Chem. Mater.1994, 6, 1176.
27.D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273, 548.
28.H. P. Lin and C. Y. Mou Acc. Chem. Rev, 2002, 35, 927.
29.V. Alfredsson and M. W. Anderson, Chem. Mat., 1996, 8, 1141-1146.
30.馬振基, 2003,奈米材料科技原理與應用。台灣,全華科技圖書股份有限公司。
31.R. I. Walton, Chem. Soc. Rev. 2002, 31, 230
32.R. A. Laudise, 1962, Hydrothermal Synthesis of Single Crystals, New Jersey: John Wiley & Sons, Inc.
33.S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian and Y.H. Zhang, J. Mater. Chem. 1999, 9, 1283
34.Y. W. Jun, J. H. Lee, J. S. Choi and J. J. Cheon, J. Phys. Chem. B. 2005, 109, 14795
35.J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao and C. H. Yan, Chem. Mater. 2002, 14, 4172.
36.C. Pacholski, A. Kornowski and H. Weller, Angew. Chem. Int. Ed. 2002, 41, 1188.
37.R. L. Penn and J. F. Banfield, Science 1998, 281, 969
38.R. L. Penn and J. F. Banfield, Geochim. Cosmochim. Acta, 1999, 63, 1549
39.J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert and R. L. Penn, Science 2000, 289, 751
40.K. Govender, D. S. Boyle, P. B. Kenway and P. O'Brien, J. Mater.Chem. 2004, 14, 2575
41.C. H. Gu, V. Y. Jr and J.W. Grant, J. Pharm. Sci. 2001, 90, 1878
42.J. H. ter Horst, R. M. Geertman and G. M. van Rosmalen, J. Cryst.Growth. 2001, 230, 277
43.X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343
44.B. M. Wen, C. Y. Liu and Y. Liu, New J. Chem. 2005, 29, 969
45.B. Cheng and E. T. Samulski, Chem. Commun. 2004, 986
46.H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu and Y. Li, Cryst. Growth.Des. 2005, 5, 1801
47.H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu and D. Que, Nanotechnology, 2004, 15, 622
48.L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge and G. K. Wong, Chem. Mater. 2000, 12, 2268
49.J. Joo, S. G. Kwon, J. H. Yu and T. Hyeon, Adv. Mater. 2005, 17, 1873
50.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater. 2003, 15, 353
51.X. Peng, Adv. Mater. 2003, 15, 459
52.M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology. 2006, 17, 206
53.R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Acc. Chem. Res. 1998, 31, 485
54.A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angew. Chem. Int. Ed. 1997, 36, 1001
55.R. Murugavel and H. W. Roesky, Angew. Chem. Int. Ed. 1997, 36, 477
56.M. G. Clerici, G. Bellussi and U. Romano, J. Catal. 1991, 129, 159
57.C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr. Pap. Am. Chem. S. 1993, 206, 57
58.J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor. Mesopor. Mat. 1998, 25, 43
59.A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J. Catal. 1994, 148, 569
60.M. D. Alba, Z. H. Luan and J. Klinowski, J. Phys. Chem. 1996, 100, 2178
61.R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal. Lett. 1996, 37, 113
62.B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem. Mater. 2001, 13, 552
63.D. R. Rolison, Science 2003, 299, 1698
64.Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics. 2004, 23, 95
65.F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor. Mesopor. Mat. 2008, 113, 562
66.M. Plabst, L. B. McCusker and T. Bein, J. Am. Chem. Soc. 2009, 131, 18112
67.M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal., 1989, 115, 301
68.R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J. Phys. Chem. B, 2002, 106, 13287
69.M. Liu, X. Ye, Y. Liu, X. Wang, Y. Wen, H. Sun, B. Li, Ind. Eng. Chem. Res. 2015, 54, 5416–5426
70.V. Russo, R. Tesser, E. Santacesaria, M. Di Serio, Ind. Eng. Chem. Res., 2012,52 ,1168
71.J. Tsuji, J. Yamamoto, M. Ishino, N. Oku, Development of new propylene oxide manufacturing process, Sumitomo Kagaku (Osaka, Japan) 2006, 1 ,4
72.V.R. Elias, M.E. Crivello, E.R. Herrero, S.G. Casuscelli, G.A. Eimer, Ind. Eng. Chem. Res.,2009, 48, 9076
73.Y. W. Ma, H. Sun, Q. Sun and H. Zhang, RSC Adv., 2015, 5, 67853
74.M. Selvaraj, P. K. Sinha, New J. Chem.,2010, 34, 1921
75.王暐翔, 2015, 孔洞氧化矽、碳材@氧化矽及矽酸鈦複合材料的合成與應用。台南﹕成功大學化學所。
76.Rodrı´guez-Castello´n, E.; Jime´nez-Lo´pez, A.; Maireles-Torres, P.; Jones, D. J.; Rozie`re, J.; Trombetta, M.; Busca, G.; Lenarda, M.; Storaro, L. J. Solid State Chem. 2003, 175, 159.
77.S. Samanta, N.K. Mal, A. Manna, A. Bhaumik, Appl. Catal. A: Gen., 2004, 273 , 157
78.T. Blasco, A. Corma, M. T. Navarro, J. Perez Pariente, J. Catal., 1995,156,65
79.Zhang, W. H.; Lu, J.; Han, B.; Li, M.; Xiu, J.; Ying, P.; Li, C. Chem. Mater. 2002, 14, 3413
80.Y. Shiraishi, N. Saito, T. Hirai, J. Am. Chem. Soc., 2005, 127, 12820
81.M. Fukuda, N. Tsunoji, Y. Yagenji, Y. Ide, S. Hayakawa, M. Sadakane and T. Sano, J. Mater. Chem. A, 2015, 3, 15280
82.F. Geobaldo, S. Bordiga, A. Zecchina, E. Giamello, Catal. Let.,1992,16,109
83. Wu, P.; Nuntasri, D.; Ruan, J.; Liu, Y.; He, M.; Fan, W.; Terasaki, O.; Tatsumi, T. J. Phys. Chem. B 2004, 108, 19126
校內:2022-06-22公開