| 研究生: |
芶儒龍 Gou, Ru-Long |
|---|---|
| 論文名稱: |
以超晶格工程形變之石墨烯製程與特性研究 Fabrication and Characterization of Graphene with Strain-Engineered Superlattice |
| 指導教授: |
陳則銘
Chen, Tse-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 石墨烯 、形變工程 、偽磁場 、強關聯電子系統 、反鐵磁 、幾何頓挫 、冪次關係 |
| 外文關鍵詞: | Graphene, Strain engineering, Pseudo-magnetic field, Electron correlation, Antiferromagnetism, Geometric frustration, Power low relation |
| 相關次數: | 點閱:32 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
材料的形變工程顯著改變了石墨烯的電子特性。形變工程可以使石墨烯的晶格結構產生彎曲、變形,進而影響電子的傳輸方式。有研究表明,形變工程可以在石墨烯內誘發高達數百特斯拉的偽磁場,生成具有電子強關連性質的電子平帶結構,甚至實現超導。形變工程在純粹由碳原子組成的石墨烯電子傳輸特性上的操縱對由強關聯電子系統誘發的量子現象研究上展現了巨大潛力。要推動這一領域的發展,形變工程的成熟和精確控制至關重要。然而現有的形變工程技術還無法精準地控制形變在材料上的分佈,局域的形變工程也還無法達到奈米級的精準度,有些方法誘發的材料形變甚至會隨著時間還有溫度退化。我們的團隊開發了一套精湛的形變工程技術,可以在石墨烯上精確地建構出具週期性排列的材料形變,其在材料上誘發的形變具有高度可控性和優異的均勻性,我們稱其為『形變超晶格』。我們已經成功地在一維形變的波紋排列超晶格雙層石墨烯和二維形變的六方排列超晶格形變三層石墨烯中根據其各自不同的形變超晶格排列設計而實現了不同的量子特性。為了揭開電子的強關聯作用與不同形變超晶格排列之間的面紗以了解他們之間如何微妙的耦合,我設計了另一個不同的形變超晶格排列-『正方排列超晶格形變三層石墨烯』。我的研究結果顯示形變超晶格在雙層石墨烯內增強了電子之間的相互耦合。電子的運輸特性在5K以上以下的溫度區間分別受兩種不同的機制主導。在5K以下的極低溫環境中,我們觀察到庫倫能隙的出現,並且電子的傳輸主要由『Efros-Shklovskii變程跳躍模型』來描述。而在5K以上,電子的行為類似於傳統半導體,可以藉由『Arrhenius傳輸模型』所描述,表現出像是彼此間沒有交互作用的費米子一樣。再者,我們還觀察到電子導電性對溫度和施加電流呈現一個常在強相關電子系統出現的冪次關係,暗示我們的系統擁有強關聯電子特性。此外,我們在六方排列超晶格形變三層石墨烯中觀察到的幾何挫折的反鐵磁有序態僅能夠在六方形變超晶格中實現。這讓我們得出一個重要的結論,電子之間的強關聯作用型態是由形變超晶格的排列設計所決定的。
Strain engineering in graphene significantly modifies its electronic properties. Strain deforms its lattice structure and deflects the electron transport. It has been reported that strain can induce a pseudo-magnetic field up to few hundred tesla, generate a electronic flat band, and achieve superconducting. This technique holds great promise for exploring fascinating quantum phenomena in strongly correlated electron systems within a purely carbon-based platform. Proficient and precise control of strain is key to advance. However, common methods to induce strain are often randomly distributed, lack nano-scale precision, and may relax over time. Our team has developed a talented method to fabricate periodic strain in graphene, which we called strain-superlattice, with high controllability and excellent uniformity. We successfully realized different emergent quantum phases in a one-dimensional corrugated bilayer graphene and a two-dimensional hexagonal-superlattice-strained-trilayer graphene according to their different configuration in strain arrangement. To unveil the hidden parameter in the interplay between electron correlation and strained-superlattice, I turned to a square-superlattice-strained-bilayer graphene. The transport properties of the electrons are observed to be dominated by two different mechanisms, with a transition occurring at 5K. A pronounced Coulomb gap described by Efros-Shklovskii variable-range hopping model emerges below 5K, whereas the electrons behave as a conventional semiconductor above 5K, which is characterized by the non-interacting Fermions as described by Arrhenius model. Furthermore, a power law dependence of electron conductance on temperature and source-drain bias is observed, suggesting a strongly correlated electron system. Additionally, we conclude that the emergence of a geometrically frustrated antiferromagnetic ordered state is only realized in the hexagonal-strained superlattice, and the electron-correlated phases created by the strain-superlattice are determined by the arrangement of the strain superlattice.
1. M. F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6, 42-60 (2011).
2. Q. Zhao, R. Frisenda, T. Wang, A. Castellanos-Gomez, InSe: a two-dimensional semiconductor with superior flexibility. Nanoscale 11, 9845-9850 (2019).
3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene. Reviews of Modern Physics 81, 109-162 (2009).
4. Y. Cao et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80-84 (2018).
5. K. P. Dhakal et al., Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chemistry of Materials 29, 5124-5133 (2017).
6. G. Plechinger et al., Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Materials 2, 015006 (2015).
7. T. Mohiuddin et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B— Condensed Matter and Materials Physics 79, 205433 (2009).
8. S. P. Milovanović, M. Anđelković, L. Covaci, F. M. Peeters, Band flattening in buckled monolayer graphene. Physical Review B 102, 245427 (2020).
9. S.-C. Ho et al., Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry. Nature Electronics 4, 116-125 (2021).
10. Y. Cao et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43-50 (2018).
11. X. Lu et al., Superconductors, orbital magnets and correlated states in magic- angle bilayer graphene. Nature 574, 653-657 (2019).
12. J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249-255 (2021).
13. M. Yankowitz et al., Tuning superconductivity in twisted bilayer graphene. Science 363, 1059-1064 (2019).
14. A. L. Sharpe et al., Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605-608 (2019).
15. S. Lisi et al., Observation of flat bands in twisted bilayer graphene. Nature Physics 17, 189-193 (2021).
16. R. Bistritzer, A. H. MacDonald, Moiré bands in twisted double-layer graphene. Proceedings of the National Academy of Sciences 108, 12233-12237 (2011).
17. S. Fang, E. Kaxiras, Electronic structure theory of weakly interacting bilayers. Physical Review B 93, 235153 (2016).
18. N. N. Nam, M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene. Physical Review B 96, 075311 (2017).
19. G. Trambly de Laissardière, D. Mayou, L. Magaud, Numerical studies of confined states in rotated bilayers of graphene. Physical Review B—Condensed Matter and Materials Physics 86, 125413 (2012).
20. C. Wu, D. Bergman, L. Balents, S. Das Sarma, Flat bands and Wigner crystallization in the honeycomb optical lattice. Physical review letters 99, 070401 (2007).
21. V. Iglovikov, F. Hébert, B. Grémaud, G. Batrouni, R. Scalettar, Superconducting transitions in flat-band systems. Physical Review B 90, 094506 (2014).
22. W.-F. Tsai, C. Fang, H. Yao, J. Hu, Interaction-driven topological and nematic phases on the Lieb lattice. New Journal of Physics 17, 055016 (2015).
23. E. H. Lieb, Two theorems on the Hubbard model. Physical review letters 62, 1201 (1989).
24. A. Mielke, Exact ground states for the Hubbard model on the Kagome lattice. Journal of Physics A: Mathematical and General 25, 4335 (1992).
25. G. Cocco, E. Cadelano, L. Colombo, Gap opening in graphene by shear strain. Physical Review B—Condensed Matter and Materials Physics 81, 241412 (2010).
26. R. Frisenda et al., Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. npj 2D Materials and Applications 1, 10 (2017).
27. P. Kang, M. C. Wang, P. M. Knapp, S. Nam, Crumpled Graphene Photodetector with Enhanced, Strain-Tunable, and Wavelength-Selective Photoresponsivity. Advanced Materials (Deerfield Beach, Fla.) 28, 4639-4645 (2016).
28. F. Li et al., Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Letters 12, 1-44 (2020).
29. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology 7, 699-712 (2012).
30. S.-W. Wang et al., Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light–matter interaction toward excellent photodetectors. ACS nano 11, 8768-8776 (2017).
31. Y. Wu et al., Ultrahigh carrier mobilities and high thermoelectric performance at room temperature optimized by strain-engineering to two-dimensional aw-antimonene. Nano Energy 63, 103870 (2019).
32. Y.-C. Hsieh et al., Engineering the Strain and Interlayer Excitons of 2D Materials via Lithographically Engraved Hexagonal Boron Nitride. Nano Letters 23, 7244-7251 (2023).
33. R. R. Nair et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science 320, 1308-1308 (2008).
34. A. K. Geim, K. S. Novoselov, The rise of graphene. Nature Materials 6, 183-191 (2007).
35. K. S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009).
36. K. Novoselov et al., Electronic properties of graphene. physica status solidi (b) 244, 4106-4111 (2007).
37. R. Xiao et al., Density functional investigation of rhombohedral stacks of graphene: Topological surface states, nonlinear dielectric response, and bulk limit. Physical Review B 84, 165404 (2011).
38. D. Pierucci et al., Evidence for Flat Bands near the Fermi Level in Epitaxial Rhombohedral Multilayer Graphene. ACS Nano 9, 5432-5439 (2015).
39. J. Lopes dos Santos, N. Peres, A. Castro Neto, Continuum model of the twisted graphene bilayer. Physical Review B—Condensed Matter and Materials Physics 86, 155449 (2012).
40. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nature Reviews Materials 2, 1-15 (2017).
41. S. Feng, Z. Lin, X. Gan, R. Lv, M. Terrones, Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horizons 2, 72-80 (2017).
42. S. Yang, J. Kang, Q. Yue, J. Coey, C. Jiang, Defect-Modulated Transistors and Gas-Enhanced Photodetectors on ReS 2 Nanosheets. Advanced Materials Interfaces 3, (2016).
43. K. S. Novoselov, A. Mishchenko, A. Carvalho, A. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
44. K.-A. N. Duerloo, Y. Li, E. J. Reed, Structural phase transitions in two- dimensional Mo-and W-dichalcogenide monolayers. Nature communications 5, 4214 (2014).
45. S. E. Thompson et al., A 90-nm logic technology featuring strained-silicon. IEEE Transactions on electron devices 51, 1790-1797 (2004).
46. A. Koma, K. Yoshimura, Ultrasharp interfaces grown with Van der Waals epitaxy. Surface Science 174, 556-560 (1986).
47. A. Koma, K. Sunouchi, T. Miyajima, in Proceedings of the 17th InternationalConference on the Physics of Semiconductors: San Francisco, California, USA August 6–10, 1984. (Springer, 1985), pp. 1465-1468.
48. A. Koma, Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72-76 (1992).
49. M.-Y. Li et al., Epitaxial growth of a monolayer WSe<sub>2</sub>- MoS<sub>2</sub> lateral p-n junction with an atomically sharp interface. Science 349, 524-528 (2015).
50. A. Castellanos-Gomez et al., Local strain engineering in atomically thin MoS2. Nano letters 13, 5361-5366 (2013).
51. A. Islam, A. van den Akker, P. X. L. Feng, Anisotropic Thermal Conductivity of Suspended Black Phosphorus Probed by Opto-Thermomechanical Resonance Spectromicroscopy. Nano Letters 18, 7683-7691 (2018).
52. F. Wang et al., Difference analysis model for the mismatch effect and substrate- induced lattice deformation in atomically thin materials. Physical Review B 98, 245403 (2018).
53. W. H. Chae, J. D. Cain, E. D. Hanson, A. A. Murthy, V. P. Dravid, Substrate- induced strain and charge doping in CVD-grown monolayer MoS2. Applied Physics Letters 111, (2017).
54. G. Plechinger et al., Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Materials 2, 015006 (2015).
55. B. Aslan et al., Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1–xWxTe2. Nano Letters 18, 2485-2491 (2018).
56. A. McCreary et al., Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS2 Grown by Vapor Transport. ACS Nano 10, 3186- 3197 (2016).
57. H. J. Conley et al., Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Letters 13, 3626-3630 (2013).
58. D.-H. Kang et al., Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene. Nature Communications 12, 5087 (2021).
59. F. Jensen, Activation energies and the arrhenius equation. Quality and Reliability Engineering International 1, 13-17 (1985).
60. M. Menzinger, R. Wolfgang, The Meaning and Use of the Arrhenius Activation Energy. Angewandte Chemie International Edition in English 8, 438-444 (2003).
61. R. Bonne et al., Intrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence. Sci Rep 10, 19798 (2020).
62. W. Wang et al., Electric field modified Arrhenius description of charge transport in amorphous oxide semiconductor thin film transistors. Physical Review B 98, (2018).
63. S. Dlimi, L. Limouny, J. Hemine, A. Echchelh, A. El Kaaouachi, EFROS- SHKLOVSKII HOPPING IN THE ELECTRONIC TRANSPORT IN 2D p- GaAs. Lith J Phys 60, 167-171 (2020).
64. A. L. Efros, B. I. Shklovskii, Coulomb Gap and Low-Temperature Conductivity of Disordered Systems. J Phys C Solid State 8, L49-L51 (1975).
65. A. Bachtold et al., Suppression of tunneling into multiwall carbon nanotubes. Phys Rev Lett 87, 166801 (2001).
66. M. Bockrath et al., Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598-601 (1999).
67. J. F. Dayen et al., Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots. The European Physical Journal Applied Physics 48, (2009).
68. B. Gao, A. Komnik, R. Egger, D. C. Glattli, A. Bachtold, Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes. Phys Rev Lett 92, 216804 (2004).
69. A. Kanda, K. Tsukagoshi, Y. Aoyagi, Y. Ootuka, Gate-voltage dependence of zero-bias anomalies in multiwall carbon nanotubes. Phys Rev Lett 92, 036801 (2004).
70. K. A. Matveev, L. I. Glazman, Coulomb blockade of tunneling into a quasi-one- dimensional wire. Phys Rev Lett 70, 990-993 (1993).
71. Z. Yao, H. W. C. Postma, L. Balents, C. Dekker, Carbon nanotube intramolecular junctions. Nature 402, 273-276 (1999).
72. A. M. Chang, Chiral Luttinger liquids at the fractional quantum Hall edge. Reviews of Modern Physics 75, 1449-1505 (2003).
73. C. L. Kane, M. P. Fisher, Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys Rev B Condens Matter 46, 15233-15262 (1992).
74. E. G. Mishchenko, A. V. Andreev, L. I. Glazman, Zero-bias anomaly in disordered wires. Phys Rev Lett 87, 246801 (2001).
75. A. S. Rodin, M. M. Fogler, Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems. Phys Rev Lett 105, 106801 (2010).
76. P. Wang et al., One-dimensional Luttinger liquids in a two-dimensional moire lattice. Nature 605, 57-62 (2022).
77. M. Monteverde et al., Tomonaga-Luttinger liquid and Coulomb blockade in multiwall carbon nanotubes under pressure. Phys Rev Lett 97, 176401 (2006).
78. A. J. Kronemeijer et al., Universal scaling in highly doped conducting polymer films. Phys Rev Lett 105, 156604 (2010).
79. W. F. Pasveer et al., Unified description of charge-carrier mobilities indisordered semiconducting polymers. Phys Rev Lett 94, 206601 (2005).
80. E. B. Sonin, Tunneling into 1D and quasi-1D conductors: Luttinger-liquid behavior and effects of environment. Physica E: Low-dimensional Systems and Nanostructures 18, 331-332 (2003).
81. M. Sassetti, U. Weiss, Transport of 1D Interacting Electrons Through Barriers and Effective Tunnelling Density of States. Europhysics Letters 27, 311 (1994).
校內:2029-08-01公開