簡易檢索 / 詳目顯示

研究生: 林孝融
Lin, Hsiao-Jung
論文名稱: 基於低耗電藍牙裝置使用卡爾曼濾波器與支持向量機之室內定位
Indoor Positioning Using Kalman Filter and Support Vector Machine Based on Bluetooth Low Energy
指導教授: 侯廷偉
Hou, Ting-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 68
中文關鍵詞: 室內定位卡爾曼濾波器類神經演算法支持向量機
外文關鍵詞: Indoor Positioning, Kalman Filter, Artificial Neural Network, Support Vector Machine, Multi-Floor
相關次數: 點閱:116下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目標有二,目標一:試圖提出一套改善目前室內定位精準度之演算法。本研究利用卡爾曼濾波器(Kalman Filter,KF)的過濾能力來降低訊號干擾,再結合支持向量機(Support Vector Machine,SVM)之方法,用於改善使用類神經網路(Artificial Neural Network)預測不良之結果。本研究稱此方法為KF-SVM。目標二:試圖提出一套適用於多樓層定位設計之方法。多樓層定位有可能發送端佈置不當或數量過多導致不同樓層間訊號互相影響。本研究提出小範圍定位並結合轉換區域之概念以確定樓層。利用小範圍定位可以降低過多訊號導致定位不良,再以轉換區域解決樓層間相互干擾之問題。本研究採iBeacon作為實驗設備,並比較KF-SVM方法與類神經演算法之差異,透過三組實驗驗證KF-SVM演算精準度可高達85%以上,並且最大誤差至多2個區域(區域大小為1.2 平方公尺,區域間隔0.8平方公尺)。此外,本研究也驗證多樓層定位演算法之可行性。多樓層定位實作以KF-SVM為基礎並結合SVM的ONE-CLASS分類器,由於該分類器複雜度較低,從實驗結果顯示該分類器預測精準度可達90%以上。

    This research has two objectives. The first objective is to propose an algorithm to improve the accuracy of indoor positioning. We reduce the signal by Kalman Filter. We also improve the correct prediction rate by Support Vector Machine. We named it as KF-SVM method. The second objective is to propose a method for Multi-Floor positioning. In Multi-Floor positioning, signals may affect each other from improper deployment or too many transmitting terminals. Hence a wrong floor may be positioned, especially when a user moves from one floor to another. We propose a concept of 'small area positioning ' with a changing area. We use small area positioning to overcome the challenge of too many transmitting terminals. With in a changing area, the problem of the interferences between different floors can be reduced. Hence, a good prediction could be achieved.
    The experiments were based on Bluetooth Low Energy (BLE) devices. We compare the result of KF-SVM and Artificial Neural Network (ANN) algorithm. The accuracy is higher than 85% and the error area is at most two areas. Besides, in the evaluation of Multi-Floor positioning, the floor changing can be detected with the classifier in KF-SVM.

    摘要 I Extended Abstract II 致謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 章節提要 3 第二章文獻探討 4 2.1 訊號衰減特性探討 4 2.2 訊號濾波器 7 2.2.1 移動均值濾波器 7 2.2.2 卡爾曼濾波器 7 2.3 室內定位技術 10 2.3.1 三角定位法 10 2.3.1.1 到達時間測距法(Time Of Arrival,TOA) 10 2.3.1.2 到達時間差測距法(Time Difference Of Arrival,TDOA) 11 2.3.1.3 角度到達測距法(Angle Of Arrival ,AOA) 12 2.3.1.4 Received Signal Strength Indicator (RSSI) 13 2.3.2 訊號強度與距離轉換模型 14 2.3.2.1 Free Space Model 14 2.3.2.2 Two Ray Ground Model 15 2.3.2.3 Shadowing Model 16 2.3.3 特徵辨識法 17 2.3.4 比較與討論 19 2.3.5 類神經網路 20 2.3.5.1 類神經網路簡介 20 2.3.5.2 多層感知器模型(Multi Layer Perceptron,MLP) 21 2.3.5.3 網路學習方法 23 2.3.6 支持向量機 25 2.3.6.1 經驗風險最小化 25 2.3.6.2 VC維度 26 2.3.6.3 結構風險最小化 26 2.3.6.4 SVM原理 28 2.3.6.5 核心函數 30 2.3.7 小結 31 第三章定位演算法設計 32 3.1 KF-SVM定位演算法設計 32 3.2 濾波器設計 36 3.2.1 1-D卡爾曼濾波設計方法 36 3.2.2 移動均值濾波器設計方法 37 3.2.3 Hybrid Filter 設計方法 37 3.3 多樓層定位設計 39 第四章定位演算法實作與結果 42 4.1 定位設備-iBeacon 43 4.2 類神經網路實作方法 45 4.2.1 Neuroph 45 4.2.2 類神經網路實作流程 46 4.3 支持向量機實作方法 48 4.3.1 LibSVM 48 4.3.2 支持向量機實作流程 48 4.4 實驗結果 49 4.4.1 訊號干擾分析與結果 49 4.4.2 濾波器分析與結果 50 4.4.3 實驗情境一 51 4.4.4 實驗情境二 55 4.4.5 實驗情境三 56 4.4.6 小結 59 第五章結論與未來研究方向 61 5.1 結論 61 5.2 未來研究方向 62 參考文獻 63 附錄一、libsvm參數說明 67

    [1] C. J. C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition", Knowledge Discovery and Data Mining, vol.2, no.2, pp.121 -167, 1998
    [2] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector Machines, 2001 [online] Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm

    [3] V. Chirakkal, M. Park and D. S. Han, "Indoor Navigation Using WiFi for Smartphones: An Improved Kalman Filter Based Approach," Proceedings of 2015 IEEE International Conference on Consumer Electronics(ICCE), 2015, pp.90-91
    [4] Z. Farid, R. Nordin, and M. Ismail, "Recent Advances in Wireless Indoor Localization Techniques and System," Journal of Computer Networks and Communications, vol. 2013, p. 12, 2013, Article ID 185138, [online]
    Available:http://dx.doi.org/10.1155/2013/185138.
    [5] H. T. Friis, "Simple Transmission Formula, " Proceedings of IRE,vol. 34, 1946, pp.254 -256
    [6] B. Li , A. G. Dempster , C. Rizos and J. Barnes , "Hybrid Method for Localization Using WLAN, "Proceedings of the International Conference on Spatial Intelligence, Innovation and Praxis,2006, pp.297–303
    [7] C. H. Huang, L. H. Lee, C. C. Ho, L. L. Wu, and Z. H. Lai, "Real-Time RFID Indoor Positioning System Based on Kalman-Filter Drift Removal and Heron-Bilateration Location Estimation," IEEE Transactions on Instrumentation and Measurement, vol. 64, pp.728-739, 2014.
    [8] H. Liu , H. Darabi , P. Banerjee and J. Liu, "Survey of Wireless Indoor Positioning Techniques and Systems", IEEE Transactions on Systems, Man, and Cybernetics, vol. 37, no. 6, pp. 1067-1080, Nov. 2007
    [9] C.-W. Hsu , C.-C. Chang and C.-J. Lin , "A Practical Guide to Support Vector Classification, " [online] Available:
    http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
    [10] S. Kikuchi, S. Matsuyama, A. Sano, and H. Tsuji, "Subspace-Based Indoor Mobile Positioning Using Support Vector Regressor," Proceedings of 2006 IEEE 64th Vehicular Technology Conference, 2006, pp. 1-5.
    [11] D. Qian and W. Dargie, "Evaluation of the Reliability of RSSI for Indoor Localization," Proceedings of 2012 International Conference on Wireless Communications in Unusual and Confined Areas (ICWCUCA), 2012, pp. 1-6.
    [12] N. A. Razak, N. H. M. Arshad, R. Adnan, M. F. Misnan, N. M. Thamrin, and S. F. Mahmud, "A Study of Kalman's Filter in Embedded Controller for Real-Time Quadrocopter Roll and Pitch Measurement," Proceedings of 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE),2012, pp. 590-595.
    [13] D. Rajaveerappa and Fituri H. Belgassem, "A Two Ray Propagation Model for Finding Mobile Location over Plain Microcellular Environment," Proceedings of 2010 IEEE International Conference on Computer and Communication Technology (ICCCT-2010), Sept. 2010, pp. 408-414.
    [14] R. Peng and M. L. Sichitiu, "Angle of Arrival Localization for Wireless Sensor Networks, "Third Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, (Reston, VA), Sep. 2006, pp. 374-382.
    [15] F. Subhan, H. Hasbullah, and K. Ashraf, "Kalman Filter-Based Hybrid Indoor Position Estimation Technique in Bluetooth networks," International Journal of Navigation and Observation, vol. 2013, p. 13, 2013, Article ID 570964,
    [Online] Available: http://dx.doi.org/10.1155/2013/570964.
    [16] V. Cherkassky and F. Mulier,Learning from Data: Concepts, Theory and Methods,2nd Edition ,Wiley-IEEE Press, United States of America.
    [17] G. Welch and G. Bishop,"An Introduction to the Kalman Filter," Technical Report, University of North Carolina at Chapel Hill, 1995.
    [18] W. Yapeng, Y. Xu, Z. Yutian, L. Yue, and L. Cuthbert, "Bluetooth Positioning Using RSSI and Triangulation Methods," Proceedings of 2013 IEEE Consumer Communications and Networking Conference (CCNC),2013, pp. 837-842.
    [19] R.-C. Chen and Y.-H. Lin, "Using ZeeBee Sensor Network with Artifical Neural Network for Indoor Location," Proceedings of 2012 Eighth International Conference on Natural Computation (ICNC), 2012, pp. 290-294.
    [20] H.-Q. Zhang, X.-W. Shi, L.-G. Cao, and G.-H. Deng, "A New Indoor Location Technology Using Back Propagation Neural Network and Improved Centroid Algorithm," 2012 31st Chinese on Control Conference (CCC), 2012, pp. 5460-5463.
    [21] Neuroph , Java Neural Network Framework, 2009 [Online] Available:
    http://neuroph.sourceforge.net/

    [22] 王進德,類神經網路與模糊控制理論入門與應用,全華圖書2013年
    [23] 林冠吉,基於訊號強度特徵值之手持裝置室內定位系統,碩士論文,通訊工程研究所,中正大學,2009年
    [24] 曾光正,智慧型室內定位演算法之研究,碩士論文,電腦與通訊研究所,樹德科技大學,2010年
    [25] 鄭傑撰,類神經網路室內定位方法之研究,碩士論文,電機工程學系研究所,義守大學,2011年
    [26] 葉怡成,類神經網路模式應用與實作,儒林圖書,2009年

    下載圖示 校內:2018-02-12公開
    校外:2018-02-12公開
    QR CODE