簡易檢索 / 詳目顯示

研究生: 陳日恒
Chen, Jih-Heng
論文名稱: 利用代謝分析及創新程序開發Chlorella sorokiniana MB-1-M12之兩階段葉黃素生產策略
Metabolic analysis and innovative process development for two-stage lutein production with Chlorella sorokiniana MB-1-M12
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 182
中文關鍵詞: 葉黃素微藻模擬戶外培養戶外培養半連續式培養饋料批次培養養蝦廢水自營培養混營培養異營培養光異營培養代謝分析兩階段培養策略醱酵槽
外文關鍵詞: Lutein, Microalgae, Simulated outdoor cultivation, Outdoor cultivation, Semi-continuous cultivation, Fed-batch cultivation, Shrimp culture wastewater, Autotrophic cultivation, Mixotrophic cultivation, Heterotrophic cultivation, Photo-heterotrophic cultivation, Metabolic analysis, Two-stage cultivation strategy, Fermenter
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從微藻萃取之類胡蘿蔔素被認為是可行的天然抗氧化劑,類胡蘿蔔素中的葉黃素 是人體眼球黃斑區之重要成分,有助於降低年齡相關性黃斑部病變(AMD)的風險。本 論文即針對以微藻生產葉黃素進行研究。本論文的第一部份,乃針對原始型 Chlorella sorokiniana MB-1 藻株及其突變株 Chlorella sorokiniana MB-1-M12 之葉黃素生產能力 進行測試。結果發現,在使用 6.0 g/L 的醋酸鈉為有機碳源進行混營培養時,原始型 藻株 MB-1 有較佳的葉黃素含量和產率,分別為 5.86 mg/g 和 2.39 mg/L/d;在相同條 件下,突變型藻株 MB-1-M12 的葉黃素生產性能優於原始型藻株,其葉黃素含量和產 率分別為 7.52 mg/g 和 3.63 mg/L/d。突變藻株 MB-1-M12 在戶外培養時,其葉黃素含 量 (6.85 mg/g)與室內培養的效果相似,但相對於可控制於全天候光照條件下的室內 培養相比,其產率 (1.35 mg/L/d)則相對降低。但大致而言,突變藻株 MB-1-M12 於戶 外培養的葉黃素生產能力相當不錯,具有進行葉黃素商業生產的潛力。
    本研究的第二部分,乃藉由各項優化操作策略,提升突變藻株 MB-1-M12 於混營 培養時之葉黃素生產效率。結果顯示,採用 75%培養基置換率的半連續式培養,葉黃 素產率及葉黃素濃度分別為 6.24 mg/L/d 及 50.6 mg/L,明顯高於以批次方式和饋料批 次方式培養之效果。在模擬戶外培養條件下 (即為 35°C/25°C、12 小時/12 小時、光/ 暗循環),可獲得最高的葉黃素產率及葉黃素濃度,分別為 3.34 mg/L/d 和 30.8 mg/L。 最後,使用 60 升管柱型光生物反應器於戶外培養突變型藻株 MB-1-M12,培養基置 換率為 75%時,可得 4.46 mg/L/d 的葉黃素產率及 27.4 mg/L 的葉黃素濃度,此結果 顯示此突變藻株於戶外培養生產葉黃素的可行性。
    在本研究第三部分,乃應用此突變微藻藻株來處理台南某養蝦場的養蝦廢水。突 變型藻株 MB-1-M12 先在鹽度為 0.5%的 BG-11 培養基中生長,獲得生物量濃度及產 率分別為 4.35 g/L 及 1.56 g/L/d。當 80%的 BG-11 營養源添加到 1 升的 75%的養蝦廢 水時,葉黃素含量和產率分別提升到 5.19 mg/g 和 5.55 mg/L/d。隨後進行一種定期交 換淡水及養蝦廢水的新型操作策略,結合先前所使用的半連續培養的操作策略,可獲 得最佳的生物量及葉黃素生產,平均生物量濃度、生物量產率、葉黃素含量和葉黃素 產率分別為 3.5 g/L、1.3 g/L/d、3.89 mg/g 和 5.0 mg/L/d。
    在本研究的第四部分中,評估了原始型藻株 MB-1 及其突變型藻株 MB-1-M12 的 生長、生物量產量和三種不同培養模式(光自營、混營及異營)下的葉黃素累積。突變型藻株 MB-1-M12 於異營條件下能有效生長,但葉黃素含量較低,顯示葉黃素累積需 要藉由光誘導之必要性。本研究亦針對原始型藻株 MB-1 和突變型藻株 MB-1-M12 在 自營生長條件下進行代謝分析,結果顯示,與原始型藻株 MB-1 相比,突變型藻株中 的碳同化及代謝物朝向類胡蘿蔔素生成路徑的累積增加,代表突變型藻株較原始型藻 株有利於葉黃素之代謝生產。最後,本研究採用創新之兩階段替換培養策略(自營/異 營及混營/異營培養)以提高突變型藻株 MB-1-M12 之葉黃素產量。結果顯示,使用最 佳兩階段操作的異營轉混營(TSHM)策略時,可獲得最高葉黃素含量 (6.17mg/g)和葉 黃素濃度 (33.64 mg/L)。
    最後,本研究第五部分中,首先藉由光照和曝氣條件的結果,證明葉黃素的生成 受到光照及 CO2 曝氣的影響。隨後以最佳培養條件的 TSHM 系統進行實驗,獲得了 近 10 g/L 的生物量濃度和 7.42 mg/g 的葉黃素含量。透過 TSHM 系統結合饋料批次/ 半連續操作策略,葉黃素含量可提高至 6.5 mg/g 以上,而葉黃素濃度達到約 80 mg/L。 在 5 升醱酵槽中放大培養,獲得了極高的葉黃素含量 (8.71 mg/g)和濃度 (181.11 mg/L),由此可知,突變型藻株 MB-1-M12 用 TSHM 系統生產葉黃素具有高度的可行 性。
    以微藻進行葉黃素生產,除了葉黃素本身以游離形式存在之優勢外,更具有生長 速度快、高葉黃素含量及產率、減少土地及用水使用率、可使用海水培養、培養不受 季節變化限制及全年皆可收成等優勢,因此有極高的潛力能夠做為葉黃素商業化生產 之原料來源。本研究建立的兩階段葉黃素生產策略,可結合混營及異營培養之優勢, 達到雙贏的局面,顯示出此系統具有未來商業化應用之潛力。

    Microalgae-derived carotenoids are increasingly being considered as feasible green alternatives for synthetic antioxidants. Lutein is a xanthophyll carotenoid found in the macular region of the human eye, which helps in reducing the risk of age-related macular degeneration (AMD). Humans are devoid of the carotenoid biosynthetic pathway, and dietary uptake of lutein is crucial in maintaining ocular health and visual acuity in older adults. Green leafy vegetables, eggs and nuts are potential lutein-rich foods, and lutein supplements are commonly used. Commercial lutein extraction utilizes the bright yellow petals of the marigold flower – Tagetus sp.. Recently, microalgae are recognized as an alternative sustainable source for beneficial health supplements such as lutein. Lutein is an essential carotenoid in green algae, participating in light-harvesting and protection of the photosynthetic apparatus against high light-induced oxidative damage. This study explores the applications of microalgal biomass as a potential source of lutein for human health supplementation.
    In this context, lutein-rich microalgal strains were selected by bioprospecting, random mutagenesis and screening. Chlorella sorokiniana MB-1 was chosen as the ideal lutein-rich microalgal strain for further studies. C. sorokiniana MB-1 was then subjected to random chemical mutagenesis to arrive at high lutein yielding strains. Lutein production from the wild-type Chlorella sorokiniana MB-1 and the mutants generated by random mutagenesis were tested for their lutein productivity. The wild-type C. sorokiniana MB-1 obtained the highest lutein productivity and lutein content of 5.86 mg/g and 2.39 mg/L/day, respectively, when 6.0 g/L sodium acetate was used as the organic carbon source in mixotrophic cultivation. Under the same conditions, mutant strain MB-1-M12 had better lutein production performance than that of the wild-type strain, exhibiting a lutein content and productivity of 7.52 mg/g and 3.63 mg/L/day, respectively. Outdoor cultivation of mutant strain MB-1-M12 obtained a slightly lower lutein content of 6.85 mg/g and markedly lower productivity of 1.35 mg/L/day when compared to the indoor culture operated under well-controlled conditions with continuous illumination. The satisfactory lutein production performance from the outdoor culture of MB-1-M12 strain demonstrates the potential in commercial production of lutein using the mutant strain.
    In the second part of the study, the lutein-enriched mutant, Chlorella sorokiniana MB- 1-M12 was grown mixotrophically for lutein production. The lutein production efficiency of the strain was enhanced by optimizing the operating strategies. The results show that the application of semi-continuous cultivation with a medium replacement ratio of 75% resulted in a higher lutein productivity and lutein concentration of 6.24 mg/L/d and 50.6 mg/L, respectively, which were markedly higher than those obtained from batch and fed-batch cultivation. Cultivation under simulated outdoor cultivation conditions (i.e., the temperature of 35°C/25°C for a 12 h/12 h light/dark cycle) could achieve the highest lutein productivity and lutein concentration of 3.34 mg/L/d and 30.8 mg/L, respectively. Lutein production by outdoor cultivation of MB-1-M12 strain with a 60-L tubular photobioreactor was performed using semi-continuous operation. With a medium replacement ratio of 75%, improved lutein productivity (4.46 mg/L/d) and concentration (27.4 mg/L) were obtained, indicating the feasibility of producing lutein under outdoor cultivation of the microalgal strain.
    In the third part of the study, microalgal cultivation was applied as a feasible strategy for treating shrimp culture wastewater (SCW) from a shrimp farm in southern Tainan. Chlorella sorokiniana MB-1-M12 was first grown on a BG-11 medium with 0.5% salinity (mimicking the wastewater salinity), obtaining a biomass concentration and productivity of 4.35 g/L and 1.56 g/L/d, respectively. When 80% of BG-11 nutrients were added to 75% strength SCW, lutein content and productivity increased to 5.19 mg/g and 5.55 mg/L/d, respectively. A novel operation strategy involving a periodic exchange of freshwater and SCW was designed for semi-continuous cultivation of MB-1-M12 strain for optimal biomass and lutein production. The average biomass concentration, productivity, lutein content, and productivity were 3.5 g/L, 1.3 g/L/d, 3.89 mg/g, and 5.0 mg/L/d, respectively. Although microalgae have been considered as an alternative natural source of lutein, this work is among the earliest reports describing lutein production from microalgae cultivated with wastewater in a circular economy concept.
    In the fourth part of the study, the lutein high-yielding strain (Chlorella sorokiniana MB-1) and its mutant derivative (Chlorella sorokiniana MB-1-M12) were evaluated for their growth, biomass production, and lutein accumulation in three different cultivation modes - photoautotrophy, mixotrophy, and heterotrophy. M12 could grow effectively under heterotrophic conditions, but the lutein content was lower, indicating the necessity of photo-induction for lutein accumulation. Metabolic analysis of MB-1 and M12 in autotrophic growth in the presence of carbon dioxide indicated that carbon assimilation and channeling of the fixed metabolites towards carotenoid accumulation was elevated in M12 compared to MB-1. Novel two-stage alternative cultivation strategies (Autotrophic/Heterotrophic and Mixotrophic/Heterotrophic cultures) were applied for enhancing lutein production in M12. Maximum lutein quantity (6.17 mg/g) and concentration (33.64 mg/L) were obtained with the TSHM (two-stage heterotrophic/mixotrophic) strategy that was determined as the best two-stage operational strategy.
    In the fifth part of the study, M12 was grown under autotrophic, mixotrophic, and heterotrophic conditions for lutein production. The lutein production efficiency of the strain was enhanced via optimal cultivation conditions and a novel operation strategy. It was demonstrated that lutein production in M12 was affected by illumination (150 μmol/m2/s) and CO2 supply (2% v/v CO2). The TSHM system obtained nearly 10 g/L biomass concentration and high lutein content of 7.42 mg/g with the optimal light intensity and CO2 supply. Integration of fed-batch/semi-batch operation in the TSHM system enhanced the lutein content to >6.5 mg/g, and a lutein concentration of 80 mg/L. Scale-up in a 5-L fermenter improved the lutein content (8.71 mg/g) and concentration (181.11 mg/L), indicating the feasibility and potential of the TSHM strategy for lutein production by M12.
    Microalgal lutein production has numerous advantages over their synthetic or plant-derived counterparts including the higher growth rate and lutein productivity in microalgae, the existence of lutein in the free form, non-interference with agricultural resources, and year around availability of the lutein-rich biomass for processing. The two-stage strategy for lutein production established in this study complement the shortcomings of both the mixotrophic and heterotrophic cultivation and resulted in the highest lutein productivity and yield. This system has potential applications for commercial lutein production and the realization of microalgae as a sustainable alternative for commercial lutein extraction.

    摘要 I Abstract III 誌謝(Acknowledgement) VI Contents VII List of Tables XII List of Figures XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and purpose 2 1.3 Research scheme of the thesis 3 Chapter 2 Literature review 8 2.1 Introduction to algae 8 2.2 Microalgae 8 2.2.1 Lipid 8 2.2.2 Carbohydrate 12 2.2.3 Protein 13 2.2.4 Carotenoids 14 2.2.5 Lutein 17 2.3 Lutein production 18 2.3.1 Conventional source of lutein production 18 2.3.2 Microalgae as a raw material for lutein production 19 2.3.3 Comparison of lutein production from Marigold flowers and microalgae 19 2.4 Microalgal lutein production 21 2.4.1 Microalgal cultivation methods 21 2.4.1.1 Autotrophic cultivation 21 2.4.1.2 Mixotrophic cultivation 22 2.4.1.3 Heterotrophic cultivation 22 2.4.1.4 Photoheterotrophic cultivation 23 2.4.2 Microalgal cultivation system 23 2.4.2.1 Open system 23 2.4.2.2 Closed system 23 2.4.3 Effect of environmental factors for lutein production 26 2.4.3.1 Light 26 2.4.3.2 Temperature 26 2.4.3.3 Nitrogen source 26 2.4.3.4 Carbon source 27 2.4.3.5 pH 27 2.4.3.6 Salinity 28 2.5 Operation strategies of microalgae cultivation for cell growth and lutein production 28 Chapter 3 Materials and Methods 30 3.1 Chemicals and materials 30 3.2 Equipment 33 3.3 Microalga strain and culture medium 37 3.4 Operation of photobioreactor 40 3.4.1 Customary photobioreactor (PBR) setup for batch experiments 40 3.4.2 Outdoor tubular-type photobioreactor 44 3.5 Analytical methods 45 3.5.1 Determination of cell concentration 45 3.5.2 Determination of biomass productivity 46 3.5.3 Determination of the lutein content and productivity 46 3.5.4 Determination of residual nitrate and sodium acetate concentration 47 3.5.5 Determination of residual glucose concentration by DNS method 47 3.5.6 Determination of residual glycerol concentration 48 3.5.7 Source, pre-treatment and nutrient analysis of shrimp culture wastewater 48 3.5.7.1 Determination of ammonium concentration 48 3.5.7.2 Determination of urea concentration 49 3.5.7.3 Determination of Total nitrogen (TN) concentration 49 3.5.7.4 Determination of total phosphorus (TP) concentration 50 3.5.7.5 Determination of chemical oxygen demand (COD) concentration 51 3.5.8 Sampling procedures for metabolic profile analysis 53 3.5.9 Metabolic profile analysis using CE/MS for Chlorella sorokiniana MB-1-M12 53 3.5.10 13C-labeling experiment for Chlorella sorokiniana MB-1-M12 54 3.5.11 Statistical analysis 54 Chapter 4 Mutant microalgal strains selection and cultivation methods comparison 55 4.1 Introduction 55 4.2 Lutein production using mixotrophic cultivation from C. sorokiniana MB-1 55 4.3 Isolation of high lutein yielding mutants of C. sorokiniana MB-1 58 4.4 Effect of cultivation modes on cell growth and lutein production of C. sorokiniana MB-1-M12 62 Chapter 5 The optimal conditions based on outdoor cultivation under mixotrophic growth 65 5.1 Introduction 65 5.2 Effect of medium composition on cell growth and lutein production of Chlorella sorokiniana MB-1-M12 65 5.3 Effect of carbon sources on lutein production of Chlorella sorokiniana MB-1-M12 under mixotrophic cultivation 68 5.4 Effect of nitrogen sources on lutein production of Chlorella sorokiniana MB-1-M12 under mixotrophic cultivation 71 5.5 Effect of light-dark cycle on biomass and lutein production of Chlorella sorokiniana MB-1-M12 under mixotrophic cultivation 74 5.6 Outdoor temperature simulated cultivation with Chlorella sorokiniana strain MB-1-M12 77 5.7 Effect of inoculum size on temperature simulation outdoor cultivation with the mutant strain Chlorella sorokiniana MB-1-M12 79 5.8 Performance of outdoor cultivation with mutant strain Chlorella sorokiniana MB-1-M12 81 5.9 Effect of sodium nitrate concentration under outdoor cultivation with the mutant strain Chlorella sorokiniana MB-1-M12 83 5.10 Effect of sodium acetate concentration on outdoor cultivation with the mutant strain Chlorella sorokiniana MB-1-M12 86 Chapter 6 Bioprocess engineering strategies for the enhanced lutein production 89 6.1 Introduction 89 6.2 Biomass and lutein productivities of Chlorella sorokiniana MB-1-M12 under semi-continuous cultivation 89 6.3 Biomass and lutein productivities of Chlorella sorokiniana MB-1-M12 using fed-batch cultivation...93 6.4 Effect of outdoor simulated temperature cultivation on the growth and lutein production of Chlorella sorokiniana MB-1-M12 in semi-continuous culture 96 6.5 Effect of low-cost medium on outdoor cultivation of Chlorella sorokiniana MB-1-M12 100 6.6 Lutein production performance of large-scale cultivation of Chlorella sorokiniana MB-1-M12 in 50-L photobioreactors with outdoor semi-continuous operations 103 Chapter 7 Microalgae cultivation using aquaculture wastewater for simultaneous phytoremediation and lutein production 108 7.1 Introduction 108 7.2 Effect of salinity on biomass and lutein production of Chlorella sorokiniana MB-1-M12 109 7.3 Metabolic profiling analysis of the effect of salt stress on Chlorella sorokiniana MB-1-M12 under mixotrophic condition 112 7.4 Cultivation of Chlorella sorokiniana MB-1-M12 in SCW with and without the addition of BG-11 nutrients 116 7.5 Biomass and lutein production of Chlorella sorokiniana MB-1-M12 cultivated with SCW with different dilution ratios 119 7.6 Biomass and lutein production of Chlorella sorokiniana MB-1-M12 cultivated with different strengths of BG-11 medium 121 7.7 Periodic exchange cultivation of Chlorella sorokiniana MB-1-M12 for enhancing lutein production using semi-continuous operation 123 7.8 Summary 124 Chapter 8 Comparison performance of Chlorella sorokiniana MB-1 (wild-type) and Chlorella sorokiniana MB-1-M12 (mutant) using different cultivation methods and metabolic profiling analysis 130 8.1 Introduction 130 8.2 Comparison of lutein accumulation by MB-1 (wild-type) and MB-1-M12 (mutant) under autotrophy, mixotrophy, and heterotrophy 131 8.3 Metabolic profiling of Chlorella sorokiniana MB-1 and MB-1-M12 under autotrophic mode 134 8.4 Analysis of metabolite turnover in Chlorella sorokiniana MB-1 and MB-1-M12 under autotrophy 137 Chapter 9 A novel operation strategy for lutein production with a combination of two cultivation methods using Chlorella sorokiniana MB-1-M12 139 9.1 Introduction 139 9.2 Effect of light source for cultivation modes using Chlorella sorokiniana MB-1-M12 140 9.3 Effect of aeration gas supply for cultivation modes using Chlorella sorokiniana MB-1-M12 143 9.4 Lutein production of Chlorella sorokiniana MB-1-M12 under two-stage cultivation strategies with four different modes 146 9.5 Effect of two-stage cultivation modes under the optimal conditions using Chlorella sorokiniana MB-1-M12 149 9.6 Effect of two-stage cultivation modes under operation strategies using Chlorella sorokiniana MB-1-M12 152 9.7 Scale up of two-stage cultivation with a two stage strategy using Chlorella sorokiniana MB-1-M12 155 Chapter 10 Conclusions 159 Reference 162 Appendix 175 Curriculum vitae i

    Acién, F., Fernández, J., Magán, J., Molina, E. 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344-1353.
    Ádám, A.L., García-Martínez, J., Szűcs, E.P., Avalos, J., Hornok, L. 2011. The MAT1-2-1 mating-type gene upregulates photo-inducible carotenoid biosynthesis in Fusarium verticillioides. FEMS Microbiology Letters, 318(1), 76-83.
    Affairs, D.o.E.a.S. 2017. World Population Prospects. United Nations.
    Alam, M.A., Wan, C., Guo, S.-L., Zhao, X.-Q., Huang, Z.-Y., Yang, Y.-L., Chang, J.-S., Bai, F.-W. 2014. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. Journal of Bioscience and Bioengineering, 118(1), 29-33.
    Alam, M.A., Wan, C., Zhao, X.-Q., Chen, L.-J., Chang, J.-S., Bai, F.-W. 2015. Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. Journal of Hazardous Materials, 289, 38-45.
    Apel, A.C., Weuster-Botz, D. 2015. Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess and Biosystems Engineering, 38(6), 995-1008.
    AQUALYTIC®. 2017. Photometer AL450.
    Aronow, M.E., Chew, E.Y. 2014. AREDS2: Perspectives, recommendations, and unanswered questions. Current Opinion in Ophthalmology, 25(3), 186.
    Bae, S.-M., Park, Y.-C., Lee, T.-H., Kweon, D.-H., Choi, J.-H., Kim, S.-K., Ryu, Y.-W., Seo, J.-H. 2004. Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzyme and Microbial Technology, 35(6-7), 545-549.
    Barredo, J.-L. 2012. Microbial carotenoids from bacteria and microalgae. Methods and Protocols; Humana Press: New York, NY, USA, 5.
    Bermejo, E., Ruiz-Domínguez, M.C., Cuaresma, M., Vaquero, I., Ramos-Merchante, A., Vega, J.M., Vílchez, C., Garbayo, I. 2018. Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. Journal of Bioscience and Bioengineering, 125(6), 669-675.
    Bernfeld, P. 1955. Amylases, alpha and beta. Methods in Enzymology I, 149-158.
    Blanco, A.M., Moreno, J., Del Campo, J.A., Rivas, J., Guerrero, M.G. 2007. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology, 73(6), 1259-1266.
    Bölling, C., Fiehn, O. 2005. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiology, 139(4), 1995-2005.
    Boonnoun, P., Opaskonkun, T., Prasitchoke, P., Goto, M., Shotipruk, A. 2012. Purification of free lutein from marigold flowers by liquid chromatography. Engineering Journal, 16(5), 145-156.
    Bowen, P.E., Herbst-Espinosa, S.M., Hussain, E.A., Stacewicz-Sapuntzakis, M. 2002. Esterification does not impair lutein bioavailability in humans. The Journal of Nutrition, 132(12), 3668-3673.
    Breithaupt, D.E., Wirt, U., Bamedi, A. 2002. Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography− mass spectrometry. Journal of Agricultural and Food Chemistry, 50(1), 66-70.
    Casal, C., Cuaresma, M., Vega, J.M., Vilchez, C. 2011. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Marine Drugs, 9(1), 29-42.
    Cazzonelli, C.I., Pogson, B.J. 2010. Source to sink: regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15(5), 266-274.
    Cecchin, M., Benfatto, S., Griggio, F., Mori, A., Cazzaniga, S., Vitulo, N., Delledonne, M., Ballottari, M. 2018. Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Scientific Reports, 8(1), 1-13.
    Cerón, M.C., Campos, I., Sanchez, J.F., Acién, F.G., Molina, E., Fernandez-Sevilla, J.M. 2008. Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. Journal of Agricultural and Food Chemistry, 56(24), 11761-11766.
    Chan, H. 2011. Recycling of Nutrients from Trash Fish Wastewater for Microalgae Production as Health and Pharmaceutical Products and Renewable Energy.
    Chang, K.J.L., Dumsday, G., Nichols, P.D., Dunstan, G.A., Blackburn, S.I., Koutoulis, A. 2013. High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Applied Microbiology and Biotechnology, 97(15), 6907-6918.
    Chang, Y.-R., Lee, D.-J., Chang, J.-S., Mujumdar, A.S. 2015. Enhancement of Lutein Yield from Coagulated Chlorella sp. ESP-6 with Sodium Hypochlorite. Drying Technology, 33(4), 429-433.
    Chapman, S.P., Paget, C.M., Johnson, G.N., Schwartz, J.-M. 2015. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii. Frontiers in Plant Science, 6, 474.
    Chavoshi, Z.Z., Shariati, M. 2019. Lipid production in Dunaliella salina under autotrophic, heterotrophic, and mixotrophic conditions. Biologia, 74(12), 1579-1590.
    Cheirsilp, B., Torpee, S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510-516.
    Chen, B., Wan, C., Mehmood, M.A., Chang, J.-S., Bai, F., Zhao, X. 2017a. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Bioresource Technology, 244, 1198-1206.
    Chen, C.-Y., Chang, H.Y. 2016. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep‐sea water supplements. Biotechnology Journal, 11(3), 356-362.
    Chen, C.-Y., Chang, J.-S., Chang, H.-Y., Chen, T.-Y., Wu, J.-H., Lee, W.-L. 2013a. Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium. Biochemical Engineering Journal, 77, 74-81.
    Chen, C.-Y., Ho, S.-H., Liu, C.-C., Chang, J.-S. 2017b. Enhancing lutein production with Chlorella sorokiniana MB-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers, 79, 88-96.
    Chen, C.-Y., Hsieh, C., Lee, D.-J., Chang, C.-H., Chang, J.-S. 2016. Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresource Technology, 200, 500-505.
    Chen, C.-Y., Liu, C.-C. 2018. Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1. Bioresource Technology, 262, 74-79.
    Chen, C.-Y., Lu, I.-C., Nagarajan, D., Chang, C.-H., Ng, I.-S., Lee, D.-J., Chang, J.-S. 2018. A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresource Technology, 253, 141-147.
    Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1), 71-81.
    Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., Bai, F.-W., Chang, J.-S. 2013b. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10.
    Chen, C.Y., Lee, P.J., Tan, C.H., Lo, Y.C., Huang, C.C., Show, P.L., Lin, C.H., Chang, J.S. 2015. Improving protein production of indigenous microalga Chlorella vulgaris FSP‐E by photobioreactor design and cultivation strategies. Biotechnology Journal, 10(6), 905-914.
    Chen, F., Zhang, Y. 1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology, 20(3), 221-224.
    Chen, J.-H., Chen, C.-Y., Chang, J.-S. 2017c. Lutein production with wild-type and mutant strains of Chlorella sorokiniana MB-1 under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers, 79, 66-73.
    Chen, J.-H., Chen, C.-Y., Hasunuma, T., Kondo, A., Chang, C.-H., Ng, I.-S., Chang, J.-S. 2019a. Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresource Technology.
    Chen, J.-H., Kato, Y., Matsuda, M., Chen, C.-Y., Nagarajan, D., Hasunuma, T., Kondo, A., Chang, J.-S. 2021. Lutein production with Chlorella sorokiniana MB-1-M12 using novel two-stage cultivation strategies-Metabolic analysis and process improvement. Bioresource Technology, 334, 125200.
    Chen, J.-H., Kato, Y., Matsuda, M., Chen, C.-Y., Nagarajan, D., Hasunuma, T., Kondo, A., Dong, C.-D., Lee, D.-J., Chang, J.-S. 2019b. A novel process for the mixotrophic production of lutein with Chlorella sorokiniana MB-1-M12 using aquaculture wastewater. Bioresource Technology, 290, 121786.
    Chen, W.-C., Hsu, Y.-C., Chang, J.-S., Ho, S.-H., Wang, L.-F., Wei, Y.-H. 2019c. Enhancing production of lutein by a mixotrophic cultivation system using microalga Scenedesmus obliquus CWL-1. Bioresource Technology, 291, 121891.
    Chestnov, O. 2013. Universal eye health: a global action plan 2014-2019. World Health Organization.
    Chew, K.W., Chia, S.R., Show, P.L., Yap, Y.J., Ling, T.C., Chang, J.-S. 2018. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332-344.
    Chi, Z., O’Fallon, J.V., Chen, S. 2011. Bicarbonate produced from carbon capture for algae culture. Trends in Biotechnology, 29(11), 537-541.
    Chinnasamy, S., Bhatnagar, A., Hunt, R.W., Das, K. 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097-3105.
    Chiu, S.-Y., Kao, C.-Y., Chen, C.-H., Kuan, T.-C., Ong, S.-C., Lin, C.-S. 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389-3396.
    Cho, S., Lee, N., Park, S., Yu, J., Luong, T.T., Oh, Y.-K., Lee, T. 2013. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515-520.
    Chojnacka, K., Marquez-Rocha, F.-J. 2004. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3(1), 21-34.
    Chopra, M., Thurnham, D. 1994. Effect of lutein on oxidation of low-density lipoproteins (LDL) in vitro. Proceedings of the Nzrtrition Society, 53.
    Chopra, M., Willson, R., Thurnham, D.I. 1993. Free Radical Scavenging of Lutein in Vitro a. Annals of the New York Academy of Sciences, 691(1), 246-249.
    Cordero, B.F., Obraztsova, I., Couso, I., Leon, R., Vargas, M.A., Rodriguez, H. 2011. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs, 9(9), 1607-1624.
    Courchesne, N.M.D., Parisien, A., Wang, B., Lan, C.Q. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141(1-2), 31-41.
    Dall'Osto, L., Lico, C., Alric, J., Giuliano, G., Havaux, M., Bassi, R. 2006. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biology, 6(1), 1-20.
    Das, A., Yoon, S.-H., Lee, S.-H., Kim, J.-Y., Oh, D.-K., Kim, S.-W. 2007. An update on microbial carotenoid production: application of recent metabolic engineering tools. Applied Microbiology and Biotechnology, 77(3), 505.
    De Bhowmick, G., Koduru, L., Sen, R. 2015. Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—a review. Renewable and Sustainable Energy Reviews, 50, 1239-1253.
    Del Campo, J.A., García-González, M., Guerrero, M.G. 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 74(6), 1163-1174.
    Del Campo, J.A., Moreno, J., Rodrı́guez, H., Vargas, M.A., Rivas, J.n., Guerrero, M.G. 2000. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta). Journal of Biotechnology, 76(1), 51-59.
    Del Campo, J.A., Rodrı́guez, H., Moreno, J., Vargas, M.A., Rivas, J., Guerrero, M.G. 2001. Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. Journal of Biotechnology, 85(3), 289-295.
    Del Campo, J.A., Rodriguez, H., Moreno, J., Vargas, M.A., Rivas, J., Guerrero, M.G. 2004. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 64(6), 848-854.
    del Mar Morales-Amaral, M., Gómez-Serrano, C., Acién, F.G., Fernández-Sevilla, J.M., Molina-Grima, E. 2015. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Research, 9, 297-305.
    Delgado‐Vargas, F., Paredes‐López, O. 1996. Correlation of HPLC and AOAC Methods to Assess the All‐trans‐Lutein Content in Marigold Flowers. Journal of the Science of Food and Agriculture, 72(3), 283-290.
    Demmig-Adams, B., Adams III, W.W. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1(1), 21-26.
    Deutz, N.E., Bauer, J.M., Barazzoni, R., Biolo, G., Boirie, Y., Bosy-Westphal, A., Cederholm, T., Cruz-Jentoft, A., Krznariç, Z., Nair, K.S. 2014. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clinical Nutrition, 33(6), 929-936.
    Dineshkumar, R., Dhanarajan, G., Dash, S.K., Sen, R. 2015. An advanced hybrid medium optimization strategy for the enhanced productivity of lutein in Chlorella minutissima. Algal Research, 7, 24-32.
    Dineshkumar, R., Subramanian, G., Dash, S.K., Sen, R. 2016. Development of an optimal light-feeding strategy coupled with semi-continuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochemical Engineering Journal, 113, 47-56.
    Doucha, J., Lívanský, K. 2006. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. Journal of Applied Phycology, 18(6), 811-826.
    Doucha, J., Straka, F., Lívanský, K. 2005. Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology, 17(5), 403-412.
    Dwyer, J.H., Navab, M., Dwyer, K.M., Hassan, K., Sun, P., Shircore, A., Hama-Levy, S., Hough, G., Wang, X., Drake, T. 2001. Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study. Circulation, 103(24), 2922-2927.
    Eggink, L.L., Park, H., Hoober, J.K. 2001. The role of chlorophyll b in photosynthesis: hypothesis. BMC Plant Biology, 1(1), 2.
    Farooq, W., Suh, W.I., Park, M.S., Yang, J.-W. 2015. Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 184, 73-81.
    Fernández-Sevilla, J.M., Fernández, F.G.A., Grima, E.M. 2010. Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology, 86(1), 27-40.
    Flórez-Miranda, L., Cañizares-Villanueva, R.O., Melchy-Antonio, O., Martínez-Jerónimo, F., Flores-Ortíz, C.M. 2017. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production. Journal of Biotechnology, 262, 67-74.
    G. Britton, S.L.-J., H. Pfander. 2004. Carotenoids Handbook Birkhäuser, Basel.
    García-González, M., Moreno, J., Manzano, J.C., Florencio, F.J., Guerrero, M.G. 2005. Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 115(1), 81-90.
    Gardeström, P., Igamberdiev, A.U. 2016. The origin of cytosolic ATP in photosynthetic cells. Physiologia Plantarum, 157(3), 367-379.
    Ghisellini, P., Cialani, C., Ulgiati, S. 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11-32.
    Gong, M., Bassi, A. 2016. Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34(8), 1396-1412.
    Guedes, A.C., Amaro, H.M., Malcata, F.X. 2011. Microalgae as sources of carotenoids. Marine Drugs, 9(4), 625-644.
    Gupta, S., Pandey, R., Pawar, S.B. 2016. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach. Frontiers of Chemical Science and Engineering, 10(4), 499-508.
    Habibi, A., Nematzadeh, G.A., Amrei, H.D., Teymouri, A. 2019. Effect of light/dark cycle on nitrate and phosphate removal from synthetic wastewater based on BG11 medium by Scenedesmus sp. 3 Biotech, 9(4), 150.
    Hasunuma, T., Harada, K., Miyazawa, S.-I., Kondo, A., Fukusaki, E., Miyake, C. 2009. Metabolic turnover analysis by a combination of in vivo 13C-labelling from 13CO2 and metabolic profiling with CE-MS/MS reveals rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum leaves. Journal of Experimental Botany, 61(4), 1041-1051.
    Hasunuma, T., Kikuyama, F., Matsuda, M., Aikawa, S., Izumi, Y., Kondo, A. 2013. Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. Journal of Experimental Botany, 64(10), 2943-2954.
    Hasunuma, T., Sanda, T., Yamada, R., Yoshimura, K., Ishii, J., Kondo, A. 2011. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories, 10(1), 2.
    He, P., Mao, B., Shen, C., Shao, L., Lee, D., Chang, J. 2013. Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129, 177-181.
    Heo, J., Shin, D.-S., Cho, K., Cho, D.-H., Lee, Y.J., Kim, H.-S. 2018. Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: Optimization of lutein productivity via regulation of light intensity and carbon source. Algal Research, 33, 1-7.
    Ho, S.-H., Chan, M.-C., Liu, C.-C., Chen, C.-Y., Lee, W.-L., Lee, D.-J., Chang, J.-S. 2014a. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275-282.
    Ho, S.-H., Chen, C.-N.N., Lai, Y.-Y., Lu, W.-B., Chang, J.-S. 2014b. Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation. Bioresource Technology, 163, 128-135.
    Ho, S.-H., Chen, C.-Y., Lee, D.-J., Chang, J.-S. 2011. Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnology Advances, 29(2), 189-198.
    Ho, S.-H., Nakanishi, A., Kato, Y., Yamasaki, H., Chang, J.-S., Misawa, N., Hirose, Y., Minagawa, J., Hasunuma, T., Kondo, A. 2017. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Scientific Reports, 7, 45471.
    Ho, S.-H., Nakanishi, A., Ye, X., Chang, J.-S., Chen, C.-Y., Hasunuma, T., Kondo, A. 2015a. Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Biotechnology for Biofuels, 8(1), 48.
    Ho, S.-H., Nakanishi, A., Ye, X., Chang, J.-S., Hara, K., Hasunuma, T., Kondo, A. 2014c. Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnology for Biofuels, 7(1), 97.
    Ho, S.-H., Xie, Y., Chan, M.-C., Liu, C.-C., Chen, C.-Y., Lee, D.-J., Huang, C.-C., Chang, J.-S. 2015b. Effects of nitrogen source availability and bioreactor operating strategies on lutein production with Scenedesmus obliquus FSP-3. Bioresource Technology, 184, 131-138.
    Hollyfield, J.G., Bonilha, V.L., Rayborn, M.E., Yang, X., Shadrach, K.G., Lu, L., Ufret, R.L., Salomon, R.G., Perez, V.L. 2008. Oxidative damage–induced inflammation initiates age-related macular degeneration. Nature Medicine, 14(2), 194.
    Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S., Lee, D.-J. 2017. Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnology Advances.
    Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621-639.
    Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G. 2010. Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38-46.
    Ip, P.-F., Chen, F. 2005. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 40(2), 733-738.
    Iskandarov, U., Khozin-Goldberg, I., Cohen, Z. 2011. Selection of a DGLA-producing mutant of the microalga Parietochloris incisa: I. Identification of mutation site and expression of VLC-PUFA biosynthesis genes. Applied Microbiology and Biotechnology, 90(1), 249-256.
    Ito, T., Sugimoto, M., Toya, Y., Ano, Y., Kurano, N., Soga, T., Tomita, M. 2013. Time-resolved metabolomics of a novel trebouxiophycean alga using 13CO2 feeding. Journal of Bioscience and Bioengineering, 116(3), 408-415.
    Johnson, X., Alric, J. 2013. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryotic Cell, 12(6), 776-793.
    Kato, Y., Ho, S.-H., Vavricka, C.J., Chang, J.-S., Hasunuma, T., Kondo, A. 2017. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching. Bioresource Technology, 245, 1484-1490.
    Keffer, J., Kleinheinz, G. 2002. Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. Journal of Industrial Microbiology and Biotechnology, 29(5), 275-280.
    Khachik, F., de Moura, F.F., Zhao, D.-Y., Aebischer, C.-P., Bernstein, P.S. 2002. Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models. Investigative Ophthalmology & Visual Science, 43(11), 3383-3392.
    Khoeyi, Z.A., Seyfabadi, J., Ramezanpour, Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 20(1), 41-49.
    Kim, B.-H., Ramanan, R., Kang, Z., Cho, D.-H., Oh, H.-M., Kim, H.-S. 2016a. Chlorella sorokiniana HS1, a novel freshwater green algal strain, grows and hyperaccumulates lipid droplets in seawater salinity. Biomass and Bioenergy, 85, 300-305.
    Kim, H.-C., Choi, W.J., Chae, A.N., Park, J., Kim, H.J., Song, K.G. 2016b. Evaluating integrated strategies for robust treatment of high saline piggery wastewater. Water Research, 89, 222-231.
    Kiron, V., Phromkunthong, W., Huntley, M., Archibald, I., De Scheemaker, G. 2012. Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquaculture Nutrition, 18(5), 521-531.
    Kitada, K., Machmudah, S., Sasaki, M., Goto, M., Nakashima, Y., Kumamoto, S., Hasegawa, T. 2009. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(5), 657-661.
    Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H., Xia, C.-G. 2012. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 360-367.
    Krinsky, N.I., Landrum, J.T., Bone, R.A. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annual Review of Nutrition, 23(1), 171-201.
    Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X., Van Langenhove, H. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28(7), 371-380.
    Kuo, C.-M., Chen, T.-Y., Lin, T.-H., Kao, C.-Y., Lai, J.-T., Chang, J.-S., Lin, C.-S. 2015. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresource Technology, 194, 326-333.
    Kuo, C.-M., Jian, J.-F., Lin, T.-H., Chang, Y.-B., Wan, X.-H., Lai, J.-T., Chang, J.-S., Lin, C.-S. 2016. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresource Technology, 221, 241-250.
    Lacour, T., Babin, M., Lavaud, J. 2020. Diversity in xanthophyll cycle pigments content and related nonphotochemical quenching (NPQ) among microalgae: implications for growth strategy and ecology. Journal of Phycology, 56(2), 245-263.
    Lee, T.-H., Chang, J.-S., Wang, H.-Y. 2013. Rapid and in vivo quantification of cellular lipids in Chlorella vulgaris using near-infrared Raman spectrometry. Analytical Chemistry, 85(4), 2155-2160.
    Li, X., Přibyl, P., Bišová, K., Kawano, S., Cepák, V., Zachleder, V., Čížková, M., Brányiková, I., Vítová, M. 2013. The microalga Parachlorella kessleri––A novel highly efficient lipid producer. Biotechnology and Bioengineering, 110(1), 97-107.
    Li, Y., Chen, Y.-F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., Ruan, R. 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138-5144.
    Li, Y., Han, D., Hu, G., Sommerfeld, M., Hu, Q. 2010. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 107(2), 258-268.
    Lin, J.-H., Lee, D.-J., Chang, J.-S. 2015a. Lutein in specific marigold flowers and microalgae. Journal of the Taiwan Institute of Chemical Engineers, 49, 90-94.
    Lin, J.-H., Lee, D.-J., Chang, J.-S. 2015b. Lutein production from biomass: marigold flowers versus microalgae. Bioresource Technology, 184, 421-428.
    Lu, Q., Zhou, W., Min, M., Ma, X., Chandra, C., Doan, Y.T., Ma, Y., Zheng, H., Cheng, S., Griffith, R. 2015. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresource Technology, 198, 189-197.
    Ma, R., Zhang, Z., Ho, S.-H., Ruan, C., Li, J., Xie, Y., Shi, X., Liu, L., Chen, J. 2020a. Two-stage bioprocess for hyper-production of lutein from microalga Chlorella sorokiniana FZU60: Effects of temperature, light intensity, and operation strategies. Algal Research, 52, 102119.
    Ma, R., Zhao, X., Ho, S.-H., Shi, X., Liu, L., Xie, Y., Chen, J., Lu, Y. 2020b. Co-production of lutein and fatty acid in microalga Chlamydomonas sp. JSC4 in response to different temperatures with gene expression profiles. Algal Research, 47, 101821.
    Mac Nair, C.E., Nickells, R.W. 2015. Neuroinflammation in glaucoma and optic nerve damage. in: Progress in molecular biology and translational science, Vol. 134, Elsevier, pp. 343-363.
    Maci, S., Santos, R. 2015. The beneficial role of lutein and zeaxanthin in cataracts. Nutrafoods, 14(2), 63-69.
    Madaan, T., Choudhary, A.N., Gyenwalee, S., Thomas, S., Mishra, H., Tariq, M., Vohora, D., Talegaonkar, S. 2017. Lutein, a versatile phyto-nutraceutical: An insight on pharmacology, therapeutic indications, challenges and recent advances in drug delivery. PharmaNutrition, 5(2), 64-75.
    Manke Natchigal, A., Oliveira Stringheta, A., Corrêa Bertoldi, M., Stringheta, P. 2010. Quantification and characterization of lutein from Tagetes (Tagetes patula L.) and Calendula (Calendula officinalis L.) flowers. XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 939. pp. 309-314.
    Marjakangas, J.M., Chen, C.-Y., Lakaniemi, A.-M., Puhakka, J.A., Whang, L.-M., Chang, J.-S. 2015. Simultaneous nutrient removal and lipid production with Chlorella vulgaris on sterilized and non-sterilized anaerobically pretreated piggery wastewater. Biochemical Engineering Journal, 103, 177-184.
    Maroneze, M.M., Barin, J.S., Menezes, C.R.d., Queiroz, M.I., Zepka, L.Q., Jacob-Lopes, E. 2014. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Scientia Agricola, 71(6), 521-524.
    Mata, T.M., Martins, A.A., Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
    Morales-Sánchez, D., Martinez-Rodriguez, O.A., Kyndt, J., Martinez, A. 2015. Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology, 31(1), 1-9.
    Namitha, K., Negi, P. 2010. Chemistry and biotechnology of carotenoids. Critical Reviews in Food Science and Nutrition, 50(8), 728-760.
    Nelson, D.L., Cox, M.M. 2009. Lehninger Principles of Biochemistry. WH Freeman New York.
    Nelson, D.L., Lehninger, A.L., Cox, M.M. 2008. Lehninger Principles of Biochemistry. Macmillan.
    Nugroho, W.A., Hermanto, M.B., Lutfi, M., Fakhri, M. 2014. Phosphorus removal of tofu processing wastewater in recirculated raceway pond bioreactor by Chlorella vulgaris. Nature Environment and Pollution Technology, 13(4), 859.
    Paniagua-Michel, J., Olmos-Soto, J., Ruiz, M.A. 2012. Pathways of carotenoid biosynthesis in bacteria and microalgae. Microbial Carotenoids from Bacteria and Microalgae, 1-12.
    Pascal, A.A., Liu, Z., Broess, K., van Oort, B., van Amerongen, H., Wang, C., Horton, P., Robert, B., Chang, W., Ruban, A. 2005. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature, 436(7047), 134-137.
    Pascolini, D., Mariotti, S.P. 2012. Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 96(5), 614-618.
    Patton, C.J., Crouch, S. 1977. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Analytical Chemistry, 49(3), 464-469.
    Peng, J., Yin, K., Yuan, J.-P., Cao, G.-X., Xue, M., Wu, C.-F., Wang, J.-H. 2012. Characterization of a newly isolated green microalga Scenedesmus sp. as a potential source of biodiesel. African Journal of Biotechnology, 11(94), 16083-16094.
    Peng, L., Lan, C.Q., Zhang, Z. 2013. Evolution, detrimental effects, and removal of oxygen in microalga cultures: a review. Environmental Progress & Sustainable Energy, 32(4), 982-988.
    Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11-36.
    Piligaev, A., Sorokina, K., Shashkov, M., Parmon, V. 2018. Screening and comparative metabolic profiling of high lipid content microalgae strains for application in wastewater treatment. Bioresource Technology, 250, 538-547.
    Pintea, A. 2003. HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47(1-4), 37-40.
    Price, G.D., Badger, M.R., Woodger, F.J., Long, B.M. 2008. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany, 59(7), 1441-1461.
    Qiu, R., Gao, S., Lopez, P.A., Ogden, K.L. 2017. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28, 192-199.
    Queiroz, M.I., Hornes, M.O., da Silva Manetti, A.G., Zepka, L.Q., Jacob-Lopes, E. 2013. Fish processing wastewater as a platform of the microalgal biorefineries. Biosystems Engineering, 115(2), 195-202.
    Radakovits, R., Jinkerson, R.E., Darzins, A., Posewitz, M.C. 2010. Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486-501.
    Ramanna, L., Guldhe, A., Rawat, I., Bux, F. 2014. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresource Technology, 168, 127-135.
    Raoof, B., Kaushik, B.D., Prasanna, R. 2006. Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy, 30(6), 537-542.
    Raven, P.H., Evert, R.F., Eichhorn, S.E. 2005. Biology of Plants. Macmillan.
    ResearchandMarkets.com. 2020. Lutein Market Size, Share, Demand By Form, By Source, By Application, By Region, Segment Forecast To 2027.
    Richmond, A. 2004. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Wiley Online Library.
    Ríos, L., Martinez, A., Klein, B., Maciel, M.W., Maciel Filho, R. 2018. Comparison of Growth and Lipid Accumulation at Three Different Growth Regimes with Desmodesmus sp. Waste and Biomass Valorization, 9(3), 421-427.
    Roberts, R.L., Green, J., Lewis, B. 2009. Lutein and zeaxanthin in eye and skin health. Clinics in Dermatology, 27(2), 195-201.
    Ruban, A.V., Berera, R., Ilioaia, C., Van Stokkum, I.H., Kennis, J.T., Pascal, A.A., Van Amerongen, H., Robert, B., Horton, P., Van Grondelle, R. 2007. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 450(7169), 575-578.
    Sajilata, M., Singhal, R., Kamat, M. 2008. The carotenoid pigment zeaxanthin—a review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 29-49.
    Sánchez, J.F., Fernández, J.M., Acién, F.G., Rueda, A., Pérez-Parra, J., Molina, E. 2008a. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry, 43(4), 398-405.
    Sánchez, J.F., Fernández-Sevilla, J.M., Acién, F.G., Cerón, M.C., Pérez-Parra, J., Molina-Grima, E. 2008b. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Applied Microbiology and Biotechnology, 79(5), 719-729.
    Sauvé, S., Bernard, S., Sloan, P. 2016. Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. Environmental Development, 17, 48-56.
    Schließmann, I., Schmid-Staiger, U. 2013. Energetische nutzung von mikroalgen: Status quo und entwicklungspotentiale. Energie Speicher Symposium.
    Schüler, L.M., Santos, T., Pereira, H., Duarte, P., Katkam, N.G., Florindo, C., Schulze, P.S., Barreira, L., Varela, J.C. 2020. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Research, 45, 101732.
    Seddon, J.M., Willett, W.C., Speizer, F.E., Hankinson, S.E. 1996. A prospective study of cigarette smoking and age-related macular degeneration in women. Jama, 276(14), 1141-1146.
    Seo, S.-H., Ha, J.-S., Yoo, C., Srivastava, A., Ahn, C.-Y., Cho, D.-H., La, H.-J., Han, M.-S., Oh, H.-M. 2017. Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat. Bioresource Technology, 244, 621-628.
    Shakeri, M., Sugano, Y., Shoda, M. 2007. Production of dye-decolorizing peroxidase (rDyP) from complex substrates by repeated-batch and fed-batch cultures of recombinant Aspergillus oryzae. Journal of Bioscience and Bioengineering, 103(2), 129-134.
    Shao, H.-B., Chu, L.-Y., Lu, Z.-H., Kang, C.-M. 2008. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. International Journal of Biological Sciences, 4(1), 8.
    Shi, X., Chen, F. 1999. Production and rapid extraction of lutein and the other lipid‐soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions. Food/Nahrung, 43(2), 109-113.
    Shi, X., Wu, Z., Chen, F. 2006. Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Molecular Nutrition & Food Research, 50(8), 763-768.
    Sierra, E., Acién, F., Fernández, J., García, J., González, C., Molina, E. 2008. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1-3), 136-147.
    Soga, T., Heiger, D.N. 2000. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 72(6), 1236-1241.
    Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.
    Sun, Z., Li, T., Zhou, Z.-g., Jiang, Y. 2015. Microalgae as a source of lutein: Chemistry, biosynthesis, and carotenogenesis. in: Microalgae Biotechnology, Springer, pp. 37-58.
    Tijani, H., Abdullah, N., Yuzir, A. 2015. Integration of microalgae biomass in biomethanation systems. Renewable and Sustainable Energy Reviews, 52, 1610-1622.
    Ting, H., Haifeng, L., Shanshan, M., Zhang, Y., Zhidan, L., Na, D. 2017. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review. International Journal of Agricultural and Biological Engineering, 10(1), 1-29.
    Ugwu, C.U., Aoyagi, H., Uchiyama, H. 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021-4028.
    Varela, J.C., Pereira, H., Vila, M., León, R. 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynthesis Research, 125(3), 423-436.
    Vechpanich, J., Shotipruk, A. 2010. Recovery of free lutein from Tagetes erecta: Determination of suitable saponification and crystallization conditions. Separation Science and Technology, 46(2), 265-271.
    Wang, H., Zhou, W., Shao, H., Liu, T. 2017. A comparative analysis of biomass and lipid content in five Tribonema sp. strains at autotrophic, heterotrophic and mixotrophic cultivation. Algal Research, 24, 284-289.
    Wang, Y., Guo, W., Cheng, C.-L., Ho, S.-H., Chang, J.-S., Ren, N. 2016. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresource Technology, 200, 557-564.
    Wang, Y., Guo, W., Yen, H.-W., Ho, S.-H., Lo, Y.-C., Cheng, C.-L., Ren, N., Chang, J.-S. 2015. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625.
    Wase, N., Black, P.N., Stanley, B.A., DiRusso, C.C. 2014. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. Journal of Proteome Research, 13(3), 1373-1396.
    Wase, N., Tu, B., Allen, J.W., Black, P.N., DiRusso, C.C. 2017. Identification and metabolite profiling of chemical activators of lipid accumulation in green algae. Plant Physiology, 174(4), 2146-2165.
    Wei, D., Chen, F., Chen, G., Zhang, X., Liu, L., Zhang, H. 2008. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Science in China Series C: Life Sciences, 51(12), 1088-1093.
    Xiao, Y., He, X., Ma, Q., Lu, Y., Bai, F., Dai, J., Wu, Q. 2018. Photosynthetic Accumulation of Lutein in Auxenochlorella protothecoides after Heterotrophic Growth. Marine Drugs, 16(8), 283.
    Xie, Y., Ho, S.-H., Chen, C.-N.N., Chen, C.-Y., Ng, I.S., Jing, K.-J., Chang, J.-S., Lu, Y. 2013. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation. Bioresource Technology, 144, 435-444.
    Xie, Y., Li, J., Ho, S.-H., Ma, R., Shi, X., Liu, L., Chen, J. 2020. Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production. Bioresource Technology, 314, 123767.
    Xie, Y., Li, J., Ma, R., Ho, S.-H., Shi, X., Liu, L., Chen, J. 2019a. Bioprocess operation strategies with mixotrophy/photoinduction to enhance lutein production of microalga Chlorella sorokiniana FZU60. Bioresource Technology, 290, 121798.
    Xie, Y., Lu, K., Zhao, X., Ma, R., Chen, J., Ho, S.H. 2019b. Manipulating Nutritional Conditions and Salinity‐Gradient Stress for Enhanced Lutein Production in Marine Microalga Chlamydomonas sp. Biotechnology Journal, 14(4), 1800380.
    Xie, Y., Zhao, X., Chen, J., Yang, X., Ho, S.-H., Wang, B., Chang, J.-S., Shen, Y. 2017. Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresource Technology, 244, 664-671.
    Xie, Y.-P., Ho, S.-H., Chen, C.-Y., Chen, C.-N.N., Liu, C.-C., Ng, I.S., Jing, K.-J., Yang, S.-C., Chen, C.-H., Chang, J.-S. 2014. Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy. Biochemical Engineering Journal, 86, 33-40.
    Yamada, T., Sakaguchi, K. 1982. Comparative studies on Chlorella cell walls: Induction of protoplast formation. Archives of Microbiology, 132(1), 10-13.
    Yang, C., Hua, Q., Shimizu, K. 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal, 6(2), 87-102.
    Yeh, K.-L., Chang, J.-S. 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120-127.
    Yeh, K.-L., Chen, C.-Y., Chang, J.-S. 2012. pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source. Biochemical Engineering Journal, 64, 1-7.
    Yeh, K.L., Chang, J.S., chen, W.m. 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP‐31. Engineering in Life Sciences, 10(3), 201-208.
    Yen, H.-W., Sun, C.-H., Ma, T.-W. 2011. The comparison of lutein production by Scenesdesmus sp. in the autotrophic and the mixotrophic cultivation. Applied Biochemistry and Biotechnology, 164(3), 353-361.
    Zarco-Tejada, P.J., Miller, J.R., Mohammed, G., Noland, T.L., Sampson, P. 2002. Vegetation stress detection through chlorophyll a+b estimation and fluorescence effects on hyperspectral imagery. Journal of Environmental Quality, 31(5), 1433-1441.
    Zarrinmehr, M.J., Farhadian, O., Heyrati, F.P., Keramat, J., Koutra, E., Kornaros, M., Daneshvar, E. 2020. Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. The Egyptian Journal of Aquatic Research, 46(2), 153-158.
    Zhang, C., Wang, Z., Zhao, J., Li, Q., Huang, C., Zhu, L., Lu, D. 2016. Neuroprotective effect of lutein on NMDA-induced retinal ganglion cell injury in rat retina. Cellular and Molecular Neurobiology, 36(4), 531-540.
    Zhao, B., Su, Y. 2014. Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renewable and Sustainable Energy Reviews, 31, 121-132.
    Zhao, X., Ma, R., Liu, X., Ho, S.-H., Xie, Y., Chen, J. 2019. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42(3), 435-443.
    Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., Yuan, Z. 2013. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research, 47(13), 4294-4302.
    Ziegler, R.G., Colavito, E.A., Hartge, P., McAdams, M.J., Schoenberg, J.B., Mason, T.J., Fraumeni Jr, J.F. 1996. Importance of α-carotene, β-carotene, and other phytochemicals in the etiology of lung cancer. JNCI: Journal of the National Cancer Institute, 88(9), 612-615.
    Zittelli, G.C., Rodolfi, L., Biondi, N., Tredici, M.R. 2006. Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261(3), 932-943.

    無法下載圖示 校內:2025-12-18公開
    校外:2025-12-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE