| 研究生: |
陳志榮 Chen, Chih-Jung |
|---|---|
| 論文名稱: |
仿生奈米磁粒製備、組裝及其特性分析 Preparation of Monodisperse Magnetic Nanoparticles for Bionic Assembly and Properties Characterization |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 312 |
| 中文關鍵詞: | 奈米磁粒 、自組裝 、磁流體 、仿生 |
| 外文關鍵詞: | Magnetic nanoparticles, magnetic fluids, bionic |
| 相關次數: | 點閱:71 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米磁粒或磁流體已被廣泛應用在各個工程領域中,但效率始終難以提升,問題的癥結在於目前的製備技術無法產出像生物體(如感磁菌)一樣,尺寸均一、形狀特異、穩定分散、可有序組裝的奈米磁粒,並且對奈米磁粒與其自組裝結構的諸多性質也不甚清楚。有鑒於此,本研究基於仿生觀點,提出了一套針對均散性奈米磁粒的製備、自組裝與特性分析等三個方面之實作與理論分析方法,試圖找出提升仿生磁粒應用效能之系統製備與應用參數,再以印證方法確定其可行性。
針對磁粒製備及其基本磁性分析方面,本文採用熱裂解法進行不同結構組成、粒徑大小與幾何形狀之均散性氧化鐵奈米粒子製備,並對其基本磁性作分析,主要結果有下列幾點。(1)便宜且天然赤鐵礦粉體可做為起始反應物,以製備粒徑為8 ~ 22 nm之均散性氧化鐵奈米磁粒,且晶體生長過程符合溶解再結晶機制;梅森保光譜分析顯示粒子的組成會與粒徑有關,當粒徑小於10.6 nm時為γ-Fe2O3,當大於12.1 nm時為γ-Fe2O3與Fe3O4之混合物,且隨著粒徑變大,Fe3O4的含量亦會增加。(2)以孔洞形赤鐵礦粉體先行製作油酸鐵錯合物,然後再拿它進行熱裂解反應,可縮短奈米磁粒的製造時間約2~3 小時。(3)將油酸鐵錯合物於油酸溶劑中高溫(380 ℃)反應2小時,可得FeO奈米磁粒,且磁粒之結構組成(如FeO、FeO/Fe3O4、Fe3O4與γ-Fe2O3)可藉由不同程度之氧化控制;(4)於熱裂解反應中添加不同濃度之CTAB (cetyl trimethyl ammonium bromide),可產出不同粒徑(10 ~ 120 nm)之八面體奈米磁粒。(5)當粒徑越小時,粒子磁矩與飽和磁化量有顯著的縮小趨勢,此現象主要源自於表面自旋傾斜的影響。(6) FeO/Fe3O4核殼奈米粒子會產生磁交換異向性效應(exchange anisotropy),且TN = 206 K趨近於塊材FeO之值;(7)八面體形奈米磁粒之超順磁臨界尺寸約為31 nm,以及最佳感磁尺寸約為66 nm。
針對自組裝方面,本研究使用溶劑乾燥法與磁場誘發法製作奈米薄膜與定向超晶格結構。理論方面則由粒子間之勢能模型出發,以粒子結構與能量差異探討結構形成之機理。結果發現: (1)以凡得瓦爾力為主的自組裝超晶格結構,距離原點周圍粒子的排列狀態掌握了大部份的能量,屬於短程力的作用;另外也發現粒子並非完美的球形,它的表面仍具有許多少晶面,而這些晶面會影響最終的粒子排列狀態。(2)以磁偶極矩為主的自組裝結構,顯示粒子磁矩往<110>方向排列會比<100>方向來的穩定,且原點附近的粒子能量並無太大的差異性,只有當粒子遠離中心點後才開始出現差異,故推論此結構的成因為長距離有序(long-range order)作用所主導。
針對特性分析方面,磁性部份主要自組裝結構形式對磁特性之影響;力學部分則是利用奈米壓痕技術分析薄膜成形品質。結果發現(1)自組裝薄膜的矯頑力會因為粒子-粒子磁偶極矩的作用而產生加強效果;(2)由於易軸磁化的效果,自組裝奈米鏈的長軸會比短軸容易磁化;(3)磁性薄膜的硬度與彈性模數分佈高低差約在1~3倍之間,且薄膜的變性主要是由較軟的表面界面活性劑分子所貢獻。
針對仿感磁菌磁粒鏈組裝及其物性分析方面,本研究利用蒙地卡羅法模擬相關製程參數對組裝微結構之影響,並分析結構幾何尺寸對磁性與力學特性分影響,以建立感磁菌奈米鏈之設計法則。結果發現(1)對奈米磁粒子而言,所採用之粒徑必須大於16 nm與磁場強度必須大於於0.005 T以上,粒子才易組裝成鏈;(2)當鏈的長度越長時,矯頑力也會隨之增加,且當鏈長n > 10以後,矯頑力已趨近於飽和值;(3)使用大粒徑或高彈性係數之介面活性劑分子進行奈米鏈之製造,可有效增加鏈長,進而增加地磁之感測靈敏度。
將本文之結果與文獻比對,發現所建立的實驗與理論方法,已可模仿生物體所能製造之極限,除了能便宜且大量製造尺寸均一的粒子之外,還能對大小、形狀、介面、組成與膠體穩定性進行控制。再則,將所建立之理論與實作進行整合並應用於感磁菌奈米鏈之設計上,顯示理想的磁粒尺寸範圍為48~70 nm之間,鏈長範圍為10~31顆,順磁浮游效率可達90 %,且當選用D = 70 nm與n = 10時,可達成高感磁與定向效率之雙重目標,顯示本文之理論推估與實作流程可有效提升地磁感測效率。
Magnetic nanoparticles (NPs) or magnetic fluids have already been extensively applied to various engineering fields in recent years. However, the efficiency is still difficult to improve all the time, mainly because the present technology can not simulate the organism, such as magnetotactic bacteria (MTB) to produce magnetic NPs with mono-size, shape peculiar one, well disparity, order assembly, and also not very clear about their properties of the isolated NPs and assembled nanostructures. In view of this, this research proposes an experimental and theoretical approach for the preparation, self-assembly, and properties characterization of the monodisperse magnetic NPs from a bionic viewpoint. Moreover, the method is also used to find out the system parameters and to improve application efficiency on bionic magnetic NPs, in addition to confirm the feasibility.
In order to prepare the magnetic NPs, and study their basic magnetic properties, this research adopted a thermally-decomposed method to synthesize mono-disperse magnetic iron oxide nano-particles (MMIONPs) with controllable structural compositions with various sizes and shapes to character their basic magnetic properties. The results indicate that (1) the relatively inexpensive natural hematite (α-Fe2O3) powders can be used as a starting material to prepare MMIONPs by following dissolution-recrystallization mechanism. The compositions of the MMIONPs were determined first by Mssbauer spectroscopy. It appears that the compositions are dependent on the NP sizes. As the size is smaller than 10.6 nm, it is in pure γ-Fe2O3 phase. As the size goes beyond 12.1 nm, it becomes the mixture of both γ-Fe2O3 and Fe3O4 phases; (2) by using porous hematite to prepare iron oleate complexes (IOCs), and then using IOCs to thermally decompose into MMIONPs, the manufacture time can save 2~3 hours; (3) the mono-disperse FeO NPs is then synthesized by decomposition of IOCs in hot oleic acid as the solvent at 380 ℃ for 2 hours, and the composition, such as FeO/Fe3O4, Fe3O4, γ-Fe2O3 can be controlled by various degree of oxidation; (4) by adding CTAB (cetyl trimethyl ammonium bromide) ligand for thermally-decomposed reaction can yield octahedral MMIONPs. The particle size can be controlled by adjusting the reaction temperature and the ratio of CTAB to precursors; (5) the saturated magnetization and moment of the NP is clearly found decreased as the NP size decreased due to surface spin canting; (6) FeO/Fe3O4 Core-Shell NPs can produce exchange anisotropic phenomenon, and the TN of FeO core is about 206 K, which is close to bulk; (7) the super-paramagnetic limited size of octahedral MMIONPs is about 31 nm, and the best magnetic recording sizes are in the range of 66 nm.
In order to self-assemble the magnetic NPs, the present work employs a dry-mediated method and a magnetic-induced method to fabricate nano-membranes and directional super-lattice nanostructures. The theory is set out by the inter-particle potential model for finding the mechanism of structural formation by probing into the relation of assembled structures and energy difference. The results indicate that (1) the van der Waals force is a short range interaction. Its energy is a major contributor to attract neighboring NPs to form the NP core. On the other hand, the NPs are not perfectly sphere, it consists of many crystal facets, and the crystal facets will influence of NP arrangement; (2) When the formation of the nano-strucutes is due to magnetic dipole force, it shows that the <110> direction structure of magnetic dipole is more stable than that of the <100> directional arrangement. Moreover, the system energy calculated near the NP core does not have too much difference, except those which are far away from the core center. Thus, it can be concluded that the mechanism for the nanostructure formation is mainly of the long-range interaction.
In order to characterize the nanostructure properties, we used the SQUID (superconducting quantum interference device) technique to analyze magnetic properties with different structural forms, and also used nano-indenter technique to analyze the mechanical properties to understand the quality of nano-membrane. The results show (1) the coercive force of self-assembled nano-menbrane can be increased by interaction of magnetic dipole; (2) the long axis of the nano-chains can be easily magnetization than that of the short axis of nano-chains due to the effect of easy-axis magnetization; (3) The distribution of the hardness and elastic modulus of magnetic membrane is varied approximately 1~3 times. The deformation of the membrane is mainly contributed by softer surface-protected ligands of the NPs.
In order to chain-assemble bionic MTB NPs, and to character the properties of the nano-chain, this research used Monte Carlo simulation to find the relation of manufacturing parameters and assembled micro-structures first, and then analyze the effect of chain-geometric factors on the mechanical and magnetic properties for coming up a set of design rules for the MTB nano-chains. The results indicate that (1) if the assembly of nano-chains uses magnetic NPs, the adopted NP size must be larger than 16 nm, and the adopted strength of magnetic filed must be larger than 0.005 T, that ensures the formation of NP chain-assembly; (2) The coercive force is increased as the chain length increased, and coercive force reaches saturation as the chain length becomes larger than 10 NPs; (3) effective chain length and sensitivity of magnetic recording can be improved either by using a larger NP size or by using a higher elastically modulus of surface-protected ligands of NPs.
When compared our research results with those of referenced data, it is found that the experimental and theoretical approach proposed by this study agrees favorably with MTB by using a sort of cheaper manufacture mono-disperse NPs with tunable size, shape, interface, and good colloidal stability. Moreover, by applying the proposed theoretical and experimental approach to design MTB nanochain with geomagnetic recording efficiency of 90 %, the ideal NP size is found to be around 48 ~ 70 nm, and the ideal chain length is found to be around 10 ~31. When the NP size of 70 nm and the chain length of 10 are used to design MTB nanochain, it presents higher efficiency of geomagnetic recording and orientation time. The results indicate that the proposed experimental and theoretical approach presented in this study is accurate and effective.
1. Kopp, R.E., Kirschvink, J.K., “The Identification and Biogeochemical Interpretation of Fossil Magnetotactic Bacteria,” Earth-Science Reviews 86, 42 (2008)
2. Odenbach, S., Ferrofluids: Magnetically Controllable Fluids and Their Applications, Springer, 2002.
3. Zeng, B.H., Sun, S., “Syntheses, Properties, and Potential Applications of Multicomponent Magnetic Nanoparticles,” Adv. Funct. Mater. 18, 391 (2008)
4. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N. “Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterization and Biological Application,” Chem. Rev. 108, 2064 (2008)
5. Jun, Y.W., Seo, J.W., Cheon, J. “Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences,” Acc. Chem. Res. 41, 179 (2008)
6. Chappert, C., Fert, A., Dau, F.N.V., “The Emergence of Spin Electronic in Data Storage,” Nature Materials 6, 813 (2007)
7. Wu, W., He, Q., Jiang, C. “Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies,” Nanoscale Res. Lett. 3, 397 (2008)
8. Jr. M.F.H., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, S.L., Twining, B.S., “Nanominerals, Mineral Nanoparticles, and Earth Systems,” Science 319, 1631 (2008)
9. Rockenberger, J., Scher, E.C., Alivisatos, A.P., “A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides,” J. Am. Chem. Soc. 121, 11595 (1999)
10. Leslie-Pelecky, D.L., Rieke, R.D. “Magnetic Properties of Nanostructured Materials,” Chem. Mater. 8, 1770, (1996)
11. Terris, B.D., Thomson, T. “Nanofabricated and Self-Assembled Magnetic Structures as Data Storage Media,” J. Phys. D: Appl. Phys. 38, R199 (2005)
12. Jonsson, T., Mattsson, J., Djurberg, C., Khan, F.A., Nordblad, P., Svedlindh, P., “Aging in a Magnetic Particle System,” Phys. Rev. Lett. 75, 4138 (1995)
13. Peddis, D., Cannas, C., Musinu, A., Piccaluga, G. “Magnetism in Nanoparticles: Beyond the Effect of Particle Size,” Chem. Eur. J. 15, 7822 (2009)
14. Eisenmenger, J., Schuller, I.K., “Overcoming Thermal Fluctuations,” Nature 2, 437 (2003)
15. Bader, S.D., “Colloquium: Opportunities in Nanomagnetism,” Rev. Mod. Phys. 78, 1 (2006)
16. Ngo, A.T., Pileni, M.P., “Assemblies of Ferrite Nanocrystals: Partial Orientation of the Easy Magnetic Axes,” J. Phys. Chem. B 105, 53 (2001)
17. Luttinger, J.M., Tisza, L., “Theory of Dipole Interaction in Crystals,” Phys. Rev. 70, 954 (1946)
18. Kechrakos, D., Trohidou, K.N., “Magnetic Properties of Dipolar Interacting Single-Domain Particles, Phys. Rev. B 58, 12169 (1998)
19. Majetich, S.A., Sachan, M. “Magnetostatic Interactions in Magnetic Nanoparticle Assemblies: Energy, Time and Length Scales,” J. Phys. D: Appl. Phys. 39, R407 (2006)
20. Badanta, S., Kleemann, W., “Supermagnetism,” J. Phys. D: Appl. Phys. 42, 013001 (2009)
21. Xi, H., Wang, X., Chen, Y., Ryan, P.J., “Ordering of Magnetic Nanoparticles in Bilayer Structures,” J. Phys. D: Appl. Phys. 42, 015006 (2009)
22. Hyeon, T., Lee, S.S., Park, J., “Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process,” J. Am. Chem. Soc. 123, 12798 (2001)
23. Woo, K., Hong, J., Choi, S., Lee, H.W., Ahn, J.P., Kim, C.S., Lee, S.W. “Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles,” Chem. Mater. 16, 2814 (2004)
24. Sun, S., Zeng, H., “Size-Controlled Synthesis of Magnetite Nanoparticles,” J. Am. Chem. Soc. 124, 8204 (2002)
25. Jana, N.R., Chen, Y., Peng, X., “Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Smiple and General Approach,” Chem. Mater. 16, 3931 (2004)
26. Yu, W.W., Falkner, J.C., Yavuz, C.T., Colvin, V.L., “Synthesis of Monodisperse Iron Oxide Nanocrystals by Thermal Decomposition of Iron Carboxylate Salts,” Chem. Commum, 2306 (2004).
27. Park, J., An, Kwangjin, Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., Hyeon, T., “Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals,” Nature Materials 3, 891 (2004)
28. Park, S.J., Kim, S., Lee, S., Khim, Z.G., Char, K., Hyeon, T. “Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres,” J. Am. Chem. Soc. 122, 8581 (2000)
29. Minervini, L., Grimes, R.W., “Defect Clustering in Wstite,” J. Phys. Chem. Solid. 60, 235 (1999)
30. Lin, X., Murthy, S., Hadjipanayis, G.C., Swann, C., Shah, S.I., “Magnetic and Structural Properties of Fe-FeO Bilayers,” J. Appl. Phys. 76, 6543 (1994)
31. Mauvernay, B., Presmanes, L., Bonningue, C., Tailhades, P., “Nanocomposite Fe1-xO/Fe3O4, Fe/Fe1-xO Thin Films Prepared by RF Sputtering and Revealed by Magnetic Coupling Effects,” J. Mag. Mag. Mater. 320, 58 (2008)
32. Gheisari, M., Mozaffari, M., Acet, M., Amighian, J., “Preparation and Investigation of Magnetic Properties of Wstite Nanoparticles,” J. Mag. Mag. Mater. 320, 2618 (2008)
33. Emel’yamov, D.A., Korolev, K.G., Mikhailenko, M.A., Knot’ko, A.V., Oleinikov, N.N., Tret’yakov, Y.D., Boldyrev, V.V., “Machanochemical Synthesis of Wstite, Fe1-xO, in High-Energy Apparatuses,” Inorgan. Mater. 40, 726 (2004)
34. Redl, F.X., Black, C.T., Papaefythymiou, G.C., Sandstrom, R.L., Yin, M., Zeng, H., Murray, C.B., O’Brien, S.P., “Magnetic, Electron, and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale,” J. Am. Chem. Soc. 126, 14583 (2004)
35. Hou, Y., Xu, Z., Sun, S., “Controlled Synthesis and Chemical Conversions of FeO Nanoparticles,” Angew. Chem. Int. Ed. 46, 6329 (2007)
36. Bronstein, L.M., Huang, X., Retrum, J., Schmucker, A., Pink, M., Stein, B.D., Dragnea, B., “Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation,” Chem. Mater. 19, 3624 (2007)
37. Cozzoli, P.D., Pellegrino, T., Manna, L., “Synthesis, Properties and Perspectives of Hybrid Nanocrystal Structures,” Chem. Soc. Rev. 35, 1195 (2006)
38. Yin, Y., Alivisatos, A.P. “Colloidal Nanocrystal Synthesis and the Organic-Inorganic Onterface,” Nature 437, 664 (2005)
39. Kumar, S., Nann, T., “Shape Control of II-VI Semiconductor Nanomaterials,” Small 2, 316 (2006)
40. Lee, B.S.M., Cho, S.N., Cheon, J., “Anisotropic Shape Control of Colloidal Inorganic Nanocrystals,” Adv. Mater. 15, 441 (2003)
41. Polleux, B.J., Pinna, N., Antonietti, M., Niederberger, M., “Ligand-Directed Assembly of Preformed Titania Nanocrystals into Highly Anisotropic Nanostructures,” Adv. Mater. 16, 436 (2004)
42. Niederberger, M., Clfen, H., “Oriented Attachment and Mesocrystals: Non-Classical Crystallization Mechanisms Based on Nanoprticles Assembly,” Phys. Chem. Chem. Phys. 8, 3271 (2006)
43. Ribeiro, C., Lee, E.J.H., Longo, E., and Leite, E.R., “A Kinetic Model to Describe Nanocrystal Growth by the Oriented Attachment Mechanism,” ChemPhysChem 6, 690 (2005)
44. Cheon, J., Kang, N.J., Lee, S.M., Lee, J.H., Yoon, J.H., Oh, S.J., “Shape Evolution of Single-Crystalline Iron Oxide Nanocrystals,” J. Am. Chem. Soc. 126, 1950 (2004)
45. Kovalenko, M.V., Bodnarchuk, M.I., Lechner, R.T., Hesser, G., Schffler, Heiss, W., “Fatty Acid as Stabilizers in Size- and Shape-Controlled Nanocrystal Synthesis: The Case of Inverse Spinel Iron Oxide,” J. Am. Chem. Soc. 129, 6352 (2007)
46. Shavel, A., Liz-Marzn, L.M., “Shape Control of Iron Oxide Nanoparticles,” Phys. Chem. Chem. Phys. 11, 3762 (2009)
47. Shavel, A., Rodrguez-Gonzlez, B., Pacifico, J., Spasova, M., Farle, M., Liz-Marzn, L.M., “Shape Control in Iron Oxide Nanocrystals Synthesis, Induced by Trioctylammonium Ions,” Chem. Mater. 21, 1326 (2009)
48. Cozzoli, P.D., Snoeck, E., Garcia, M.A., Giannini, C., Guagliard, A., Gervellino, A., Gozzo, F., Hernando, A., Achterhold, K., Ciobanu, N., Parak, F.G., Cingolani, R., Manna, L., “Colloidal Synthesis and Characterization of Tetrapod-Shaped Magnetic Nanocrystals,” Nano Lett. 6, 1966 (2006)
49. Kim, D., Lee, N., Park, M., Kim, B.H., An, K., Hyeon, T., “Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes,” J. Am. Chem. Soc. 131, 454 (2009)
50. Chantrell, R.W., Bradbury, A., Popplewell, J., Charles, S.W., “Particle Cluster Configuration in Magnetic Fluids,” J. Phys. D: Appl. Phys. 13, L119 (1980)
51. Chantrell, R.W., Bradbury, A., Popplewell, J., Charles, S. W., “Agglomerate Formation in Magnetic Fluid,” Journal of Applied Physics, 53, 2742, 1982.
52. Klokkenburg, M., Vonk, C., Claesson, E.M., Meeldijk, J.D., Ern, B. H., Philipse, A.P., “Direct Imaging of Zero-Field Dipolar Structures in Colloidal Dispersions of Synthetic Magnetite,” J. Am. Chem. Soc. 126, 16706 (2004)
53. Lalatonne, Y., Motte, L., Richardi, J., Pileni, M.P., “Influence of Short-Rang Interaction on the Mesoscopic Organization of Magnetic Nanocrystals,” Physical Review E, 71, 011404 (2005).
54. Pileni, M.P. “Intrinsic Behavior of Face-Centered-Cubic Supra-Crystals of Nanocrystals Self-organized on Mesoscopic Scale,” Chaos, 15, 047504 (2005).
55. Richardi, R., Motte, L. Pileni, M.P., “Mesoscopic Organization of Magnetic Nanocrystal: the Influence of Short-Range Interaction,” Current Opinion in Colloid and Interface Science, 9, 185 ( 2004).
56. Richardi, J., Pileni, M.P., Weis, J.J., “Self-Organization of Confined Dipolar Particles in a Parallel Field,” J. Chem. Phys. 130, 124515 (2009)
57. Pileni, M.P. “Self Assembly of Inorganic Nanocrystals in 3D Supra Crystals: Intrinsic Properties,” Surf. Sci. 603, 1498 (2009)
58. Pileni, M.P., “Supracrystals of Inorganic Nanocrystals: An Open Challenge for New Physical Properties,” Acc. Chem. Res. 41, 1799 (2008)
59. Zhang, Xi., Zhang, Z., Glotzer, S.C., “Simulation Study of Dipole-Induced Self-Assembly of Nanocubes,” J. Phys. Chem. C 111, 4132 (2007)
60. Wang, Z.L., “Structural Analysis of Self-Assembling Nanocrystal Superlattices,” Adv. Mater. 10, 13 (1998)
61. Rabani, E., Reichman, D.R., Geissler, P.L., Brus, L.E., “Drying-Mediated Self-Assembly of Nanoparticles,” Nature 426, 271 (2003)
62. Sau, T.K., Murphy, C.J., “Self-Assembly Patterns Formed upon Solvent Evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of Various Shapes,” Langmuir 21, 2923 (2005)
63. Bigioni, T.P., Lin, X.M., Nguyen, T.T., Corwin, E.I., Witten, T.A., Jaeger, H.M., “Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers,” Nature Mater. 5, 265 (2006)
64. Querner, C., Fischbein, M.D., Heiney, P.A., Drndic, M., “Millimeter-Scale Assembly of CdSe Nanorods into Smectic Superstructures by Solvent Drying Kinetics,” Adv. Mater. 20, 2308 (2008)
65. Kalsin, A.M., Kowalczyk, B., Smoukov, S.K., Klajn, R., and Grzybowski, B.A., “Ionic-like Behavior of Oppositely Charged Nanoparticles,” J. Am. Chem. Soc., 0642966 (2006).
66. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S.C., kotov, N.A., “Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets,” Science, 314, 274 (2006)
67. Korgel, B.A., Fitzmaurice, D., “Condensation of Ordered Nanocrystal Thin Films,” Phys. Rev. Lett. 80, 3531 (1998)
68. Shevchenko, E. V., Talapin D.V., Kotov, N.A., O’Brien, S., and Mussy, C. B., “Structural Diversity in Binary Nanoparticle Superlattices,” Nature, 439, 55, 2006.
69. Lu, C., Chen, Z., O’Brien, S., “Optimized Conditions for the Self-Organization of CdSe-Au and CdSe-CdSe Binary Nanoparticle Superlattices,” Chem. Mater. 20, 3594 (2008)
70. Yin, M., Chen, Z., Deegan, B., O’Brien, S., “Wstite Nanocrystals: Synthesis, Structure and Superlattice Formation,” J. Mater. Res. 22, 1978 (2007)
71. Yang, P., The Chemistry of Nanostructured Materials, World Scientific, Singapore, 2003.
72. Klabunde, K.J., Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001.
73. Jun, Y.W., Choi, J.S., Cheon, J., “Heterstructured Magnetic Nanoparticles: their Versatility and High Performance Capabilities,” Chem. Comm. 1203, 2007.
74. Vergs, M.A., Costo, R., Macro, J.F., Goya, G.F., Serna, C.J., Morales, M.P., “Uniform and Water Stable Magnetite Nanoparticles with Diameters around the Monodomain-Mutidomain Limit,” J. Phys. D: Appl. Phys. 41, 134003 (2008)
75. Park, J.I., Kang, N.J., Jun, Y.W., Oh, S.J., Ri, H.C., Cheon, J., “Superlattice and Magnetism Directed by the Size and Shape of Nanocrystals,” Chem. Phys. Chem. 3, 543 (2002)
76. Park, J., Lee, E., Hwang, N.M., Kang, M., Kim, S.C., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hyeon, T., “One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles,” Angew. Chem. Int. Ed. 44, 2872 (2005)
77. Choi, J.R., Oh, S.J., Ju, H., Cheon, J., “Massive Fabrication of Free-Standing One-Dimensional Co/Pt Nanostructures and Modulation of Ferromagnetism via a Programmable Barcode Layer Effect,” Nano. Lett. 5, 2179 (2005)
78. Salazar-Alvarez, G., Qin, J., Šepelk, V., Bergmann, I., Vasilakaki, M., Trohidou, K.N., Ardisson, J.D., Macedo, W.A.A., Mikhaylova, M., Muhammed, M., Bar, M.D., Nogus, J., “Cubic versus Spherical Magnetic Nanoparticles: The Role of Surface Anisotropy,” J. Am. Chem. Soc. 130, 13243 (2008)
79. Meikelejohn, W.H., Bean, C.P., “New Magnetic Anisotopy,” Phys. Rev. 102, 1413 (1956)
80. Meikelejohn, W.H., Bean, C.P., “New Magnetic Anisotopy,” Phys. Rev. 105, 904 (1957)
81. Kiwi, M., “Exchange Bias Theory,” J. Mag. Mag. Mater. 234, 5844 (2001)
82. Tracy, J.B, Weiss, D.N., Dinega, D.P., Bawendi, M.G., “Exchange Biasing and Magnetic Properties of Partially and Fully Oxidized Colloidal Cobalt Nanoparticles,” Phys. Rev. B 72, 064404 (2005)
83. Bianco, L.D., Fiorani, D., Testa, A.M., Bonetti, E., Savini, L., Bonetti, E., Savini, L., Signoretti, S., “Magnetothermal Behavior of a Nanoscale Fe/Fe Oxide Granular System,” Phys. Rev. B 66, 174417 (2002)
84. Salazar-Alvarez, G., Sort, J., Suriach, S., Bar, M.D., Nogus, J., “Synthesis and Size-Dependent Exchange Bias in Inverted Core-Shell MnO/Mn3O4 Nanoparticles,” J. Am. Chem. Soc. 129, 9102 (2007)
85. Nogus, J., Schuller, I.K., “Exchange Bias,” J. Mag. Mag. Mater. 192, 203 (1999)
86. Shavel, A., Rodrguez-Gonzlez, B., Spasova, M., Farle, M., “Synthesis and Characterization of Iron/Iron Oxide Core/Shell Nanocubes,” Adv. Funct. Mater. 17, 3870 (2007)
87. Seto, T., Akinage, H., Takano, F., Koga, K., Orii, T., Hirasawa, M., “Magnetic Properties of Monodispersed Ni/NiO Core-Shell Nanoparticles,” Phys. Chem. B 109, 13403 (2005)
88. Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., “Monodispersed MnO Nanoparticles with Epitaxial Mn3O4 Shells,” J. Phys. D: Appl. Phys. 41, 134007 (2008)
89. Luna, C., Morales, M.D.P., Serna, C.J., Vzquez, M., “Exchange Anisotropy in Co80Ni20/Oxide Nanoparticles,”Nanotechnology 15, S293 (2004)
90. Kavich, D.W., Dickerson, J.H., Mahajan, S.V., Hasan, S.A., Park, J.H., “Exchange Bias of Singly Inverted FeO/Fe3O4 Core-Shell Nanocrystals,” Phys. Rev. 78, 174414 (2008)
91. Masala, O., Seshadri, R., “Spinel Ferrite/MnO Core/Shell Nanoparticles: Chemical Synthesis of All-Oxide Exchange Biased Architectures,” J. Am. Chem. Soc. 127, 9354 (2005)
92. Lyberatos, A., Wohlfarth, E.P., “A Monte Carlo Simulation of the Dependence of the Coercive Force of A Fine Particle Assembly of the Volume Packing Factor,” J. Mag. Mag. Mater. 59, L1 (1986)
93. Sahoo, Y., Cheon, M., Wang, S., Luo, H., Furlani, E.P., Prasad, P.N., “Field-Direxted Self-Assembly of Magnetic Nanoparticles,” J. Phys. Chem. B 108, 3380 (2004)
94. Alphandry, E., Ding, Y., Ngo, A.T., Wang, Z.L., Wu, L.F., Pileni, M.P., “Assemblies of Aligned Magnetotactic Bacteria and Extracted Magnetosomes: What is the Main Factor Responsible for the Magnetic Anisotropy?,” ACS NANO, 3, 1539 (2009)
95. Farrell, D., Majetich, S.A., SanChez-Hanke, C., Kao, C.C., J. Appl. Phys. 95, 6636 (2004)
96. El-Hilo, M., Chantrell, R.W., O’grady, K., “A Model of Interaction Effect in Granular Magnetic Solids,” J. Appl. Phys. 84, 5114 (1998)
97. Alphandry, E., Ngo, A.T., Lefvre, C., Lisiecki, I., Wu, L.F., Pileni, M.P., “Difference between the Magnetic Properties of the Magnetotactic Bacteria and Those of the Extracted Magnetosomes: Influence of the Distance between the Chains of Magnetosomes,” J. Phys. Chem. C 112, 12304 (2008)
98. Kechrakos, D., Trohidou, K.N., “Effect of Dipolar Interactions on the Magnetic Properties of Granular Solids,” J. Mag. Mag. Mater. 177, 943 (1998)
99. Farrell, D., Cheng, Y., McCallum, R.W., Sachan, M., Majetich, S.A., “Magnetic Interactins of Iron Nanoparticles in Arrays and Dilyte Dispersions,” J. Phys. Chem. B 109, 13409 (2005)
100. Bae, C.J., Angappane, S., Park, J.G., “Experimental Studies of Dipolar Interparticle Interaction in Monodisperse Fe3O4 Nanoparticles,” Appl. Phys. Lett. 91, 102502 (2007)
101. Binder, K., Young, A.P., “Spin Glasses: Experimental Facts, Theoretical Concepts and Open Question,” Rev. Mod. Phys. 85, 801 (1986)
102. Binder, K., Schrder, K., “Phase Transitions of a Nearest-Neighbor Ising-Model Spin Glass,” Phys. Rev. B 14, 2142 (1976)
103. Chamberlin, R.V., Mozurkewich, G., Orbach, R., “Time Decay of the Remanent Magnetization in Spin-Glasses,” Phy. Rev. Lett. 52, 867 (1984)
104. Ulrich, M., Garcia-Otero, J., Rivas, J., Bunde, A., “Slow Relaxation in Ferromagnetic Nanoparticles: Indication of Spin-Glass Behavior,” Phys. Rev. 67, 024416 (2003)
105. Denisov, S.I., Lyutyy, T.V., “Magnetic Relaxational Nanoparticle Ensembles,” Phys. Rev. B 67, 014411 (2003)
106. Cornell. R.M., Schwertmann, U., The Iron Oxide: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH, Weinheim, 2003.
107. Tang, J., Myers, M., Bosnick, K.A., Brus, L.E., “Magnetite Fe3O4 Nanocrystals: Spectroscopic Observation of Aqueous Oxidation Kinetics,” J. Phys. Chem. B 107, 7501 (2003)
108. Chen, C.J., Lin, C.C., Chiang, R.K., Lin, C.R., Lyubutin, I.S., Alkaev, E.A., Lai, H.Y., “Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles form Submicrometer Hematite Powders,” Crys. Growth. Des. 8, 877 (2008)
109. Mullin, J.W., Crystallization, Butterworth-Heinemann, London, 1997
110. Park, J., Joo, J., Kwon, G., Jang, Y., Hyeon, T., “Synthesis of Monodisperse Spherical Nanocrystals,” Angew. Chem. Int. Ed. 46, 4630 (2007)
111. Lamer, V.K., Dinegar, R.H., “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols,” J. Am. Chem. Soc. 72, 4847 (1950)
112. Tadao, S., Fine Particles: Synthesis, Chaeacterization, and Mechanism of Growth, Marcel Dekker, New York, 2000.
113. Myers, D., Surface, Interfaces, and Colloids, John Wiley & Sons, Canada, 1999.
114. Bishop, K.M., Wilmer, C.E., Soh, S., Grzybowski, B.A. “Nanoscale Forces and Their Uses in Self-Assembly,” Small 5, 1600 (2009)
115. Grzybowski, B.A., Wilmer, C.E., Kim, J., Browne, K.P., Bishop, K.J.M., “Self-assembly: form Crystals to Cells,” Soft Matter 5, 1110 (2009)
116. Feke, D.L., Prabhu, N.D. Mann, J.A., “A Formulation of the Short-Range Repulsion between Spherical Colloidal Particles,” American Chemical Society, 88, 5735 (1984)
117. O’Handley, R.C., Modern Magnetic Materials: Principles and Applications, John Wiley & Sons, Canada, 2000.
118. Zhu, Y., Modern Techniques for Characterizing Magnetic Materials, Springer, New York, 2005
119. Ohldag, H., Scholl, A., Nolting, F., Arenholz, E., Maat, S., Young, A.T., Carey, M., Sthr, J., “Correlation between Exchamge Bias and Pinned Interfacial Spins,” Phys. Rev. Lett. 91, 017203-1 (2003)
120. Malozemoff, A.P., “Random-Field Model of Exchange Anisotropy at Rough Ferromagnetic-Antiferromagnetic Interfaces,” Phys. Rev. B 35, 3679 (1987)
121. Stoner, E.C., Wohlfarth, E.P., “A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys,” Phil. Tans. R. Soc. Lond. A 240, 599 (1948)
122. Nunes, W.C., Cebollada, F., Knobel, M., Zanchet, D., “Effects of Dipole Interactions on the Magnetic Properties of γ-Fe2O3 Nanoparticles in the Blocked State,” J. Appl. Phys. 99, 08N705 (2006)
123. Jacobs, I.S., Bean, C.P., “ An Approach to Elongated Fine-Particle Magnets,” Phys. Rev. 100, 1060 (1955)
124. Shcherbakov, V.P., Winklhofer, M., Hanzlik, M., Petersen, N., “Elastic Stability of Chains of Magnetosomes in Magnetotactic Bacteria,” Eur. Biophys. J. 26, 319 (1997)
125. Greenwood, N.N., Gibb, T.C., Mssbauer Spectroscopy, Chapman and Hall. Ltd., London, 1978
126. Chen, C.J., Lai, H.Y., Lin, C.C., Wang, J.S., Chiang, R.K., “Preparation of Monodisperse Iron Oxide Nanoparticles via the Synthesis and Decomposition of Iron Fatty Acid Complexes,” Nanoscale Res. Lett., 4, 1343 (2009)
127. Liu, P., Cai, W., Zeng, H., “Fabrication and Size-Dependent Optical Properties of FeO Nanoparticles Induced by Laser Ablation in a Liquid Medium,” J. Phys. Chem. C 112, 3261 (2008)
128. Minervini, L., Grimes, R.W., “Defect Clustering in Wstite,” J. Phys. Chem. Chem. Solid. 60, 235 (1999)
129. Kim, D., Park, J., An, K., Yang, N.K., Park, J.G., Hyeon, T., “Synthesis of Hollow Iron Nanoframes,” J. Am. Chem. Soc. 129, 5812 (2007)
130. Lu, W., Liu, Q., Sun, Z., He, J., Ezeolu, C., Fang, J., “Super Crystal Structures of Octahedral c-In2O3 Nanocrystals,” J. Am. Chem. Soc. 130, 6983 (2008)
131. Collier, C.P., Vossmeyer, T., Heath, J.R., “Nanocrystal Superlattices,” Annu. Rev. Chem. 49, 371 (1998)
132. Yomamuro, S., Sumiyama, K., “Why Do Cubic Nanoparticles Favor a Square Array? Mechanism of Shape-Dependent Arrangement in Nanocube Self-Assemblies,” Chem. Phys. Lett. 418, 166 (2006)
133. Yomamuro, S., Sumiyama, K., Kamiyama, T., “Shape-Induced Cubic Arrangment in Three-Dimensional Nanocube Self-Assembly,” Appl. Phys. Lett. 92, 113108 (2008)
134. Harfehist, S.A., Wang, Z.L., Whetten, R.I., Vezmar, I., Alvarez, M.M., “Three-Dimensional Hexagonal Close-Packed Superlattices of Passivated Ag Nanocrystals,” Adv. Mater. 9, 817 (1997)
135. Korgel, B.A., Fullam, S., Connolly, S., Fitzmaurice, D., “Assembly and Self-Organization of Silver Nanocrystal Superlattices: Order Soft Spheres,” J. Phys. Chem. B, 102, 8379 (1998)
136. Wang, Z.L., “Structural Analysis of Self-Assembling Nanocrystal Superlattices,” Adv. Mater. 10, 13 (1998)
137. Fink, J., Kiely, C.J., Bethell, D., Schiffrin, D.J., “Self-Organization of Nanosized Gold Particles,” Chem. Mater. 10, 922 (1998)
138. Wang, Z.L., Dai. Z., Sun, S., “Polyhedral Shapes of Cobalt Nanocrystals and Their Effects on Ordered Nanocrystal Assembly,” Adv. Mater. 12, 1944 (2000)
139. Song, Q., Ding, Y., Wang, Z.L., Zhang, Z.J., “Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals form Shape-Segregated Self-Assemblies,” J. Phys. Chem. B 110, 25547 (2006)
140. Lalatonne, Y., Richardi, J., Pileni, M.P., “Van der Waals versus Dipolar Forces Controlling Mesoscopic Organizations of Magnetic Nanocrystals,” Nature Materials, 3, 121 (2004)
141. Lin, C.R., Chiang, R.K., Wang, J.S., Sung, T.W., “Magnetic Properties of Monodisperse Iron Oxide Nanoparticles,” J. Appl. Phys. 99, 08N710 (2006)
142. Gilbert, I., Milln, A., Palaco, F., Falqui, A., Snoeck, E., Serin, V., “Magnetic Properties of Maghematite Nanoparticles in a Polyvinypyridine Matrix,” Polyhedron 22, 2457 (2003)
143. Maicas, M., Rivero, M.A., Lpez, E., Snchez, M.C., Aroca, C., Snchez, P., “Micromagnetic Structures in Square Magnetic Nanodots,” J. Magn. Mag. Mater. 242, 1024 (2002)
144. Yu, Y., Tauxe, L., “Micromagnetic Models of the Effect of Particle Shape on Magnetic Hysteresis,” Phys. Eart. Plan. Inter. 169, 92 (2008)
145. Witt, A., Fabian, K., Bleil, U., “Three-Dimensional Micromagnetic Calculations for Naturally Shaped Magnetite: Octahedra and Magnetosomes,” Eart. Plan. Sci. Lett. 233, 311 (2005)
146. Fabian, K., Hubert, A., “Shape-Induced Pseudo-Single-Domain Remanence,” Geophys. J. Int. 138, 717 (1999)
147. Cao, L.F., Xie, D., Guo, M.X., Park, H.S., Fujita, T., “Size and Shape Effects on Curie Temperature of Ferromagnetic Nanoparticles,” Trans. Nanoferrous Met. China, 17, 1451 (2007)
148. Goya, G.F., Morales, M.P., “Field Dependence of Blocking Temperature in Magnetite Nanoparticles,” J. Meta. Nanocryst. Mater. 20, 673 (2004)
149. Zheng, X.G., Xu, C.N., Nishikubo, K., Nishiyama, K., Higemoto, W., Moon, W.J., Tanaka, E., Otabe, E.S., “Finite-Size Effect on Neel Temperature in Antiferromagnetic Nanoparticles,” Phys. Rev. B 72, 014464 (2005)
150. McBaon, S.C., Yiu, H.H.P., Dobson, J., “Magnetic Nanoparticles for Gene and Drug Delivery,” International J. Nanomedicine 3, 169 (2008)
151. Teixeira, P.I.C., Tavares, J.M., Gama, M.M.T.D., “The Effect of Dipolar Forces on the Structure and Thermodynamics of Classical Fluids,” J. Phys.: Condens. Matter 12, R411 (2000)
152. Smith, M.J., Sheehan, P.E., Perry, L.L., O’Connor, L.N., Csonka, L.N., Applegate, B.M., Whitman, L.J., “Quantifying the Magnetic Advantage in Magnetotaxis,” Biophysical J. 91, 1098 (2006)
153. Gross,, J, Reichenauer, G., Fricke, J., “Mechanical Properties of SiO2 Aerogels,” J. Phys. D: Appl. Phys. 21, 1447 (1988)
154. Mueggenburg, K.E., Lin, X.M., Goldsmith, R.H., Jaeger, H.M., “Elastic Membranes of Close-Packed Nanoparticle Arrays,” Nature Materials 6, 656 (2007)
155. Greer, J.R., Street, R.A., “Mechanical Characterization of Solution-Derived Nanoparticle Silver Ink Thin Films,” J. Appl. Phys. 101, 103529 (2007)
156. Wampler, H.P., Ivanisevic, A., “Nanoindentation of Gold Nanoparticles Functionalized with Protein,” Micro 40, 444 (2009)
157. Moner-Girona, M., Roig, A., Molins, E., “Micromechanical Properties of Silica Aerogels,” Appl. Phys. Lett. 75, 653 (1999)
158. Lee, D., Jia, S., Banerjee, S., Bevk, J., Herman, I.P., Kysar, J.W., “Viscoplastic and Granular Behavior in Films of Colloidal Nanocrystals,” Phys. Rev. Lett. 98, 026103 (2007)
159. Ogunsola, O., Ehrman, S., “A Monte Carlo and Continuum Study of Mechanical Properties of Nanoparticle Based Films,” J. Nanopaert. Res. 10, 31 (2008)
160. Ma, H.S., Prevost, J.H., Jullien, R., Scherer, G.W., “Computer Simulation of Mechanical Structure-Property Relationship of Aerogels,” J. Non-cryst. Soild. 285, 216 (2001)
161. Raichman, Y., Kazakevich, M., Robkin, E., Tsur, Y., “Inter-Nanoparticle Bonds in Agglomerates Studied by Nanoindentation,” Adv. Mater. 18, 2028 (2006)
162. Tripp, S.L., Pusztay, S.V., Ribbe, A.E., Wei, A., “Self-Assembly of Cobalt Nanoparticle Rings,” J. Am. Chem. Soc. 124, 7914 (2002)
163. Xiong, Y., Ye, J., Gu, X., Chen, Q.W., “Synthesis and Assembly of Magnetite Nanocubes into Flux-Closure Rings,” J. Phys. Chem. C, 111, 6998 (2007)
164. McBain, S.C., Yiu, H.H.P., Dobson, J., “Magnetic Nanoparticles for Gene and Drug Delivery,” International J. Nanomedicine 3, 169 (2008)
165. Faivre, D., Schler, D., “Magnetotactic Bateria and Magnetosomes,” Chem. Rev. 108, 4875 (2008)
166. Frankel, R.B., Blakemore, R.P., “Navigational compass in Magnetic Bateria,” J. Magn. Magn. Mater. 15-18, 1562 (1980)
167. Tombcz, E., Buca, D., Hajdu, A., Ills, E., Majzik, A., Vks, L., “Surfacetant Double Layer Stabilized Magnetic Nanofluids for Biomedical Application,” J. Phys.: Condens. Matter. 20, 204103 (2008)
168. He, Y.T., Wan, J., Tokunaga, T., “Kinetic Stability of Hematite Nanoparticles: the Effect of Particle Sizes,” J. Nanopart. Res. 10, 321 (2008)
169. Chen, C.J., Lai, H.Y., “Production Control and Characterization of Bilayer-Surfactant Coated Stable Water-Soluble Monodisperse Magnetic Iron Oxide Nanoparticle,” J. Chine. Soc. Mech. Eng. 29, 457 (2008)
170. Shen, L., Stachwiak, A., Fateen, S.E.K., Laibinis, P.E., Hatton, T.A., “Structure of Alkanoic Acid Stabilized Magnetic Fluids, A Samll-Angle Neutron and Light Scattering Analysis,” Langmuir 17, 288 (2001)
171. Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C., Dravid, V.P., “Interaction of Fatty Acid Monolayers with Cobalt Nanoparticles,” Nano Letters 4, 383 (2004)
172. Castro, L.L., Silva, M.F., Bakuzis, A.F., Miotto, R., “Mono-disperse Ferrofluids Clusterization: A Monte Carlo Study,” J. Mag. Mag. Mater. 289, 230 (2005)
173. Lai, H.Y., Chen, C.J., “Shape-Controlled Synthesis of Iron Sulfide Nanostructures via Oriented Attachment Mechanism,” J. Cryst. Grow. 311, 4698 (2009)
174. Wang, H., Salvenson, “A Review on the Material Chemistry of the Nano-Stoichiometric Iron Sulphide, Fe1-xS (0≦x≦0.125): Polymorphs, Phase Relations and Transitions, Electronic and Magnetic Structures,” Phase Transitions 78, 547 (2005)
175. Putnis, A. “Observations on Coexisting Pyrrhotite Phases by Transmission Electron Microscopy,” Contrib. Mineral. Petrol. 52, 307 (1975)
176. Kakano, A., Tokonami, M., Morimoto, N., “Refinement of 3C Pyrrhotite, Fe7S8,” Acta Cryst. B35, 722 (1979)
177. Li, F., Franzen, F., “Ordering, Incpmmensuration, and Phase Transitions in Pyrrhotite, Part II: A High-Temperature X-Rat Powder Diffraction and Thermomagnetic Study,” J. Soli. Stat. Chem. 126, 108 (1996)
178. Han, W., Gao, M., “Investigation on Iron Sulfide Nanosheets Prepared via a Single-Source Precursor Approach,” Cryst. Grow. Desin. 8, 1023 (2008)
179. Reimer, L., Transmission Electron Microscopy, Springer, Tokyo, 1997
180. Pamme, N., “Magnetism and Microfluidsic,” Lab on Chip, 6, 24 (2006)
181. Ginder, J.M., Davis, L.C., “Shear Stresses in Magnetorheological Fluids: Role of Magnetic Saturation,” Appl. Phys. Lett. 65,3410 (1994)
182. Chen, X., Ma, Y.Q., Hui, P.M., Tong, F.Q., “Microstructures in Strongly Interacting Dipolar Fluids,” Chin. Phys. Lett. 22, 485 (2005)
183. Butter, K., Bomans, P.H.H., Frederik, P.M., Vroege, G.J., Philpse, A.P., “Direct Observation of Dipolar Chains in Iron Ferrofluids by Cryogenic Electron Microscopy,” Nature 2, 88 (2003)
184. Satoh, A., Chantrell, R.W., Kamiyama, S.I., Coverdale, G.N., “Two-Dimensional Monte Carlo Simulation to Capture Thich Chainlike Clusters of Ferromagnetic Particles in Colloidal Dispersions,” J. Colloid. Interf. Sci. 178, 620 (1996)
185. Pyanzina, E., Kantorovich, S., Cerd, J.J., Ivano, A., Holm, C., “How to Analyse the Structure Factor in Ferrofluids with Strong Magnetic Interactions: a Combined Analytic and Simulation Approach,” Molecular Physics 107, 571 (2009)
186. Popplewell, J., Davies, P., radbury, A., Chantrell, R.W., “Chain Formation in Magnetic Fluid Composites,” IEEE Transactions on Magnetics MAG-22, 1128 (1986)
187. Papaefthymiou, G.C., “Nanoparticle Magnetism,” Nano Today 4, 438 (2009)
188. Frankel, R.B., Bazylinski, D.A., “How Magnetotactic Bacteria Make Magnetosomes Queue UP,” TRENDS in Microbiology, 14, 329 (2006)
189. Blakemore, R., “Magnetotactic bacteria,” Science, 190, 377 (1975)
190. Shenoy, G.K., Wagner, F.E., Mssbauer Isomer Shifts, North Holland, Amsterdam, 1978
191. 張煦、李學養譯,磁性物理學,聯經出版社(1981)
192. 張金中、王中林,自組裝奈米結構,化學工業出版社 (2005)
193. 金重勳,磁性技術手冊,中華民國磁性技術學會 (2002)
194. 丁志華、管正平、黃新言、戴寶通, “奈米壓痕量測系統簡介,”奈米通訊, 第九卷, 第三期, 第4 ~ 10 頁 (2003)
195. 蔡發達、張瑞慶, “氧化銦錫薄膜之機光電性質分析,” 聖約翰學報, 第二十五期, 第1~11 頁 (2008)
196. 林家園, “黃金薄膜與聚甲基丙烯酸甲酯之介面機械性質研究,”國立中山大學機械與機電工程研究所碩士論文, 2007.
197. 陳志榮, “流體中奈米微粒自結合傳遞與釋放技術之研發,” 國立成功大學機械工程系碩士論文, 2004.
198. 張有義、郭蘭生,膠體及介面化學入門,高立圖書有限公司 (2001)
199. 鄭福田,微粒導論,渤海堂文化公司 (1990)
200. 林文欽、林敏聰, “淺談0-2維奈米磁性系統,” 物理雙月刊, 第三十卷, 第二期, 第160~167 頁 (2008)
201. 胡裕民、黃榮俊, “鐵磁/反鐵磁金屬薄膜間的交換異向性,” 物理雙月刊, 第二十二卷, 第六期, 第552~560 頁 (2000)
202. 潘永信, “趨磁細菌磁小體研究進展,”微生物通報, 第33卷, 第三期, 第133~137頁 (2006)
203. 衛榮漢、賴梅鳳、張慶瑞, “磁性微結構中自旋組態及其動態過程,” 物理雙月刊, 第二十六卷, 第四期, 第565~570 頁 (2004)
204. 楊謝樂, “磁性奈米粒子於生物醫學上之應用,” 物理雙月刊, 第二十八卷, 第四期, 第692~697 頁 (2006)