簡易檢索 / 詳目顯示

研究生: 詹智傑
Zhan, Zhi-Jie
論文名稱: 利用低氮電漿流量改進電漿輔助式分子束磊晶成長之氮化硼薄膜品質
Improved quality of BN thin film by plasma-assisted molecular beam epitaxy using low N-plasma flux
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 57
中文關鍵詞: 六方氮化硼電漿輔助式分子束磊晶矽(111)基板光電子能譜
外文關鍵詞: Molecular beam epitaxy, hexagonal boron nitride, x-ray photoelectron spectroscopy
相關次數: 點閱:79下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文透過交替生長法利用氮氣電漿在矽基板上形成β-Si3N4薄膜,最後使用高溫硼蒸氣與β-Si3N4最頂層的氮原子發生反應形成一層極薄的h-BN,在RHHED的螢光幕上觀察到與h-BN晶格常數比例相符合的繞射條紋,在隨後光電子能譜的量測中得來自h-BN的B 1s殼層的光電子,其束縛能為191.03ev,在拉曼光譜量測中,無法觀測到h-BN E2g的振動模態, 因此我們推測極薄的h-BN與下方β-Si3N4有強烈共價鍵彼此連結。
    由於交替成長法無法在h-BN緩衝層形成後繼續增厚,僅能在β-Si3N4介面處生成h-BN,所以我們使用氮氣電漿與硼蒸鍍源同時開啟的作法,希望能在緩衝層形成後繼續磊晶h-BN薄膜,藉由同時生長法在矽基板上成長出厚度為88nm以上多晶h-BN薄膜,我們在拉曼光譜中明顯量測到代表h-BN E2g的振動模態峰值訊號,其峰值中心位置約為1366cm-1與h-BN塊材型態的峰值中心位置相符合。

    In this study ,we demonstrate two methods of synthesing a hexagonal boron nitride (h-BN) thin film on the Si(111) substrate by using plasma assisted molecular beam epitaxy (PAMBE). Reflection high energy electron diffraction (RHEED) revealed a streaky (1×1) pattern, indicative of an atomically flat surface after h-BN growth. Raman spectroscopy was used to probe the effect of the growth temperature and the N-plasma flux on the MBE grown h-BN film. The chemical composition of the h-BN film was verified by x-ray photoelectron spectroscopy (XPS). Our investigations demonstrate that PAMBE is a promising, versatile alternative to both the exfoliation approach and chemical vapour deposition of h-BN.

    第一章 簡介 1 1.1 前言 1 1.2 六方氮化硼的相關研究 2 第二章 實驗儀器及原理 5 2.1電漿輔助式分子束磊晶系統(Plasma-assisted Molecular Beam Epitaxy, PA-MBE) 5 2.2 反射式高能電子繞射儀(Reflection High Energy Electron Diffraction, RHEED) 6 2.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 8 2.4 拉曼光譜學(Raman spectroscopy) 9 2.5 X-ray光電子能譜學(X-ray Photoemission Spectroscopy, XPS) 10 2.5.1 光電子能譜學原理 10 2.5.2 同步輻射光源(Synchrotron-Radiation, SR) 11 第三章 六方氮化硼的磊晶成長 13 3.1 基板的選擇與清理過程 13 3.1.1 基板的選擇 13 3.1.2 基板清理流程 14 3.2 六方氮化硼的成長 16 3.2.1 氮化Si (111)形成β-Si3N4薄膜 16 3.2.2 h-BN薄膜成長 17 第四章 結果與討論 20 4.1 交替成長法h-BN薄膜物性分析 20 4.1.1 反射式高能電子繞射(RHEED)圖樣分析 20 4.1.2 極薄h-BN薄膜的表面形貌 26 4.1.3 超薄h-BN緩衝層 28 4.2 同時成長法h-BN薄膜物理性質分析 32 4.2.1 成長後RHEED圖樣分析 32 4.2.2 多晶h-BN薄膜的表面形貌 33 4.2.3 多晶h-BN薄膜拉曼光譜: 37 4.2.4 h-BN薄膜 光電子能譜表面元素分析 39 4.3 h-BN/β-Si3N4/Si 模型建立與能帶結構 43 4.3.1 h-BN/β-Si3N4 價帶不連續值(Valence Band Offset,VBO) 4.3.2 h-BN/β-Si3N4/Si 異質接面能帶圖(Band Diagram) 45 第五章 總結 47 5.1 結論 47 5.2 未來工作 48 附錄 49 附錄 1:氮(nitrogen)光電子能譜圖 49 附錄 2:硼(Boron)光電子能譜圖 51 附錄 3:矽(Silicon)光電子能譜圖 53 文獻參考 55

    [1]吳科慧,奈米通訊,23卷,No.1,p8-p16(2016).
    [2]G. L. Lay, Nature Nanotechnology 10, 202–203 (2015).
    [3]K. Watanabe, T. Taniguchi,and H. Kanda, Nature Materials 3, 404 - 409 (2004).
    [4]C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotechnology 5, 722–726 (2010).
    [5]S. M. Kim, A. Hsu, M. H. Park, S. H. Chae, S. J. Yun, J. S. Lee, D. H. Cho, W. Fang, C. Lee, T. Palacios, M. Dresselhaus, K. K. Kim, Y. H. Lee, and J. Kong, Nature Communications 6, 8662 (2015).
    [6] K. Novoselov, Nature Materials 6, 720 - 721 (2007).
    [7] A. Eckmann, J. Park, H. Yang, D. Elias, A S. Mayorov, G Yu, R. Jalil, K. S. Novoselov, R. V. Gorbachev, M. Lazzeri, A. K. Geim, and C. Casiraghi, Nano Lett. 13, 5242−5246(2013).
    [8] E.Wang, X. Lu, S. Ding,W. Yao, M. Yan, G.Wan, K. Deng,S. Wang, G. Chen, L. Ma, Jeil Jung, A. V. Fedorov, Y Zhang, G. Zhang, and S. Zhou, Nature Physics 12, 1111–1115 (2016).
    [9] K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. R.Nieva, M. Dresselhaus, T. Palacios, and J. Kong, Nano Lett. 12, 161−166(2012).
    [10] M. S. Driver, J. D. Beatty, O. Olanipekun, K. Reid, A. Rath, P. M. Voyles, and J.A. Kelber, Langmuir 32, 2601−2607(2016).
    [11]S. Nakhaie, J. M. Wofford, T. Schumann, U. Jahn, M. Ramsteiner, M. Hanke, J. M. J. Lopes, and H. Riechert, Appl. Phys. Lett. 106, 213108 (2015).
    [12]J. Klein, Epitaktische Heterostrukturen aus dotierten Manganaten, PhD Thesis, University of Cologne (2001).
    [13]K. Jacobs, Ultra High Vacuum Lab, Saarland University.
    [14]李培瑋, 國立成功大學物理所碩士畢業論文(2010).
    [15]國家同步輻射中心網站.
    [16]C.L. Wu, J.C. Wang, M.H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003).
    [17]A. Fissel, J. Krugener1, D. Schwendt, and H.J. Osten, Phys. Status. Solidi. A.207, 2, 245–253 (2010).
    [18]李竑均, 國立成功大學物理所碩士畢業論文 (2014).
    [19]S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson, Phys. Rev. B 71, 205201(2005).
    [20]C. Riedl,1 C. Coletti, T. Iwasaki, A. A. Zakharov,and U. Starke, Phys. Rev. Lett. 103, 246804( 2009).
    [21]F. Fromm, M .H. Oliveira , A. M.Sánchez, M. Hundhausen, J. M. J. Lopes, H. Riechert, L. Wirtz, and T. Seyller, New Journal of Physics 15, 043031(2013).
    [22]H.Sediri, D. Pierucci, M. Hajlaoui, H. Henck, G. Patriarche,Y. J. Dappe, S. Yuan, B. Toury, R. Belkhou, M. G. Silly,F.Sirotti, M. Boutchich,and A. Ouerghi, Scientific Reports 5, 16465 (2015).
    [23]K. S. Park, D. Y. Lee, K. J. Kim and D. W. Moona, Applied Physics Letters 70, 315 (1997).
    [24]J. Chastain, Handbook of X-ray Photoelectron Spectroscopy , Perkin-Elmer Corportion & Physical Electronics Division, Minnesota(1992)
    [25]R.V. Gorbachev , I. Riaz , R.R. Nair , R. Jalil , L.Britnell , B.D. Belle , E.W. Hill , K.S. Novoselov , K. Watanabe , T. Taniguchi , A.K. Geim , and P. Blake, small 7, 465–468( 2011).
    [26]Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung,A. H. MacDonald, R. Vajtai, J. Lou1 and P. M. Ajayan, Nature Communications 4, 2541 (2013).
    [27]S. J. Tsai, C. L. Wang, H. C. Lee, C. Y. Lin, J. W. Chen, H. W. Shiu, L. Y. Chang, H. T. Hsueh, H. Y. Chen, J. Y. Tsai,Y. H. Lu, T. C. Chang, L. W. Tu, H. Teng, Y. C. Chen, C. H. Chen and C. L. Wu, Scientific Reports 6, 28326 (2016).
    [28]H. M. Lee, C. T. Kuo, H. W. Shiu , C. H. Chen , S. Gwo , Appl. Phys. Lett. 95, (2009)

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE