簡易檢索 / 詳目顯示

研究生: 梁柏堅
Liang, Bo-Jian
論文名稱: 應用三波長頻域光子遷移系統於靜態或漸增強度運動中組織血液動態實驗
Application of a three-wavelength frequency domain photon migration system in static or incremental exercise tissue hemodynamics measurements
指導教授: 曾盛豪
Tseng, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 63
中文關鍵詞: 漫反射光譜法動脈血氧濃度組織血氧濃度漸進式強度運動測試
外文關鍵詞: Diffuse reflection spectroscopy, Tissue blood oxygen saturation, Arterial blood oxygen saturation, incremental exercise measured
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血液氧合濃度是一項重要的生理指標,也廣泛的應用在臨床上。本篇文章係利用反射式頻域光子遷移系統(Frequency Doman Photon Migration, FDPM)來監測手指動脈血氧飽和濃度(SaO2)與組織血氧飽和濃度(StO2),另一方面我們參考運動生理學的理論,監測運動中肌肉組織血氧飽和度的變化,以提供運動員更多的生理資訊做為訓練的參考;漫反射光譜學以輻射傳播方程式(Radiative transport equation, RTE)為基礎,對組織的特性做適當的簡化為擴散理論(Diffusion theory),透過擴散理論可計算出在特定光學參數下光子行走的相位及振幅的衰減;研究中利用660nm、780nm與830nm三個波長的雷射二極體,分別調變100MHz、140MHz及180MHz。雷射二極體經過振幅調變過後會產生一個光子密度波(Photon Density Wave, PDW),在組織中訊號會產生振幅衰減及相位偏差,再透過疊代及最小平方法求出吸收及縮減散射,最後再利用色團擬合的方法計算出帶氧血紅素(HbO2)及不帶氧血紅素(Hb)的濃度,可利用2.2.2章中的介紹計算出StO2及SaO2;本研究將其針對手指的動脈血氧、組織血氧、總血紅素,以及運動的肌肉組織血氧監控進行探討,手指血氧我們與市售儀器比較,由於FDPM系統對於壓力的變化相當敏感,因此我們會同步對壓力進行監控;運動實驗則是參考哈佛醫學院對於運動中工作肌群的血氧濃度變化的研究,採漸增式運動強度測試的方法,監測漸增式運動強度測試時的肌肉組織血氧濃度(SmO2)與非運動肌肉組織血氧濃度(StO2)的變化趨勢,觀察系統量測出的StO2是否符合運動生理學中所描述,並且以Humon作為實驗的參考標準。本實驗因為需要長時間的監控StO2的變化,所以穩定性的量測是至關重要的,穩定性量測30分鐘的振幅異變數為0.12%至0.28%之間,相位標準差為0.034o至0.16o,說明這樣的系統穩定性是在合理的範圍之內。

    Blood oxygen saturation is a very important physiological parameter. In this study, a Frequency-Domain Photon Migration system(FDPM) in diffuse reflectance spectroscopy was used to measure the tissue optics Parameters (absorption and reduced scattering coefficient) with laser diodes at 660 nm, 780 nm, and 830 nm, and the spectral fitting method, to fit the concentration of oxy-hemoglobin and deoxy-hemoglobin, calculate the arterial oxygen saturation and tissue oxygen saturation according to the ratio and dynamic information of each other, The commercially available arterial oximeter is used as a reference for the measurement. The experimental results are consistent with the results of the commercially available arterial oximeter, which verifies the feasibility of the system measurement and improves the traditional finger clip arterial oximeter. Measure the limitation of location, and apply it to the measurement of not-working muscle oxygen saturation, cooperate with Humon to measure the tissue oxygen saturation of muscle tissue of working muscle groups during exercise, and analyze the physiological theory of exercise on muscle tissue blood in different periods The effect of tissue hemodynamics on the experimental results is also consistent with theoretical predictions.

    摘要 …………………………………….I 目錄 …………………………………VII 表目錄 ………………………………….IX 圖目錄 …………………………..X 第一章 序論 1 1.1研究背景 1 1.2研究動機與目的 2 第二章 背景理論 4 2.1漫反射光譜學 4 2.1.1輻射傳播方程式(Radiative transport equation, RTE) 4 2.1.2擴散理論(Diffusion theory) 8 2.1.3邊界條件(Boundary Condition) 11 2.2色團濃度定量 14 2.2.1比爾定律(Beer’s law) 14 2.2.2色團擬合(Chromophore fitting) 17 2.3運動期間肌肉組織含氧及總血紅素變化 18 第三章材料與方法 20 3.1FDPM系統架構及原理 20 3.1.1FDPM系統架構 20 3.1.2FDPM系統穩定性量測 23 3.1.3FDPM扣除系統響應及光學參數(吸收與散射)的計算 24 3.1.4光學探頭設計 26 3.2固態仿體製作 29 3.3手指動脈血氧及組織血氧量測實驗 31 3.4漸增式強度運動測試 32 第四章結果與討論 33 4.1FDPM系統穩定性量測結果 33 4.2FDPM系統量測仿體實驗數據 35 4.3FDPM-針對拇指量測動脈血氧及組織血氧 37 4.4運動量測與市售儀器比較 47 第五章結論與未來工作 59 5.1結論 59 5.2未來工作 60 第六章參考文獻 61

    [1] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, "Diffuse optics for tissue monitoring and tomography," Reports on Progress in Physics, 2010, 73, 7, 076701.
    [2] A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, and B. J. Tromberg, "Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media," (in eng), Applied optics, 2000, 39, 10, 1659-67.
    [3] J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," (in eng), Applied optics, 1997, 36, 1, 10-20.
    [4] F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Applied optics, 2000, 39, 34, 6498-6507.
    [5] S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, "Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study," (in eng), Journal of biomedical optics, 2012, 17, 7, 077005.
    [6] S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, "Chromophore concentrations, absorption and scattering properties of human skin in-vivo," (in eng), Optics express, 2009, 17, 17, 14599-617.
    [7] J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Applied optics, 1998, 37, 16, 3586-3593.
    [8] F. Bevilacqua, P. Marquet, O. Coquoz, and C. Depeursinge, "Role of tissue structure in photon migration through breast tissues," Applied optics, 1997, 36, 1, 44-51.
    [9] A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. L. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," Journal of biomedical optics, 2004, 9, 6, 1143-1152.
    [10] S. Matcher, M. Cope, and D. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Applied optics, 1997, 36, 1, 386-396.
    [11] A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Physics in Medicine & Biology, 1995, 40, 11, 1957.
    [12] T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Medical physics, 1992, 19, 4, 879-888.
    [13] S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, "Tissue oxygenation monitor using NIR spatially resolved spectroscopy," in Optical tomography and spectroscopy of tissue III, 1999, 3597: International Society for Optics and Photonics, 582-592.
    [14] B. W. Pogue and M. S. Patterson, "Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory," Physics in medicine & biology, 1994, 39, 7, 1157.
    [15] T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, "Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy," Review of scientific instruments, 2000, 71, 6, 2500-2513.
    [16] S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, "Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry," Optical engineering, 1995, 34, 1, 32-43.
    [17] B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, and R. C. Haskell, "Properties of photon density waves in multiple-scattering media," Applied optics, 1993, 32, 4, 607-616.
    [18] H. Auger, L. Bherer, É. Boucher, R. Hoge, F. Lesage, and M. Dehaes, "Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical exercise using time-domain near infrared spectroscopy," Biomedical optics express, 2016, 7, 10, 3826-3842.
    [19] S. A. Carp, P. Farzam, N. Redes, D. M. Hueber, and M. A. Franceschini, "Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis," Biomedical optics express, 2017, 8, 9, 3993-4006.
    [20] P. Farzam, Z. Starkweather, and M. A. Franceschini, "Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle," Physiological reports, 2018, 6, 7, e13664.
    [21] L. F. Ferreira, D. M. Hueber, and T. J. Barstow, "Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise," Journal of Applied Physiology, 2007, 102, 1, 358-367.
    [22] E. P. Widmaier, H. Raff, K. T. Strang, and A. J. Vander, Vander's Human physiology: the mechanisms of body function. Boston: McGraw-Hill Higher Education, 2008.
    [23] 彭清次 彭英毅, 運動生理學 初版. 1982.
    [24] M. J. Joyner and D. P. Casey, "Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs," Physiological reviews, 2015.
    [25] R. J. Shephard, "Physiology of sport and exercise," Applied Physiology, Nutrition, and Metabolism, 2012, 37, 1, 197-198.
    [26] R. Belardinelli, T. J. Barstow, J. Porszasz, and K. Wasserman, "Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy," European journal of applied physiology and occupational physiology, 1995, 70, 6, 487-492.
    [27] D. J. Bentley, J. Newell, and D. Bishop, "Incremental exercise test design and analysis," Sports medicine, 2007, 37, 7, 575-586.

    下載圖示 校內:2025-07-21公開
    校外:2025-07-21公開
    QR CODE