| 研究生: |
陳柏翰 Chen, Bon-Han |
|---|---|
| 論文名稱: |
蘭嶼雅美傳統房屋的通風改善 The ventilation improvement of traditional Yami houses on Lanyu |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 自然通風 、CFD 、蘭嶼 、雅美族房屋 |
| 外文關鍵詞: | Natural ventilation, CFD, Lanyu, Yami house |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蘭嶼雅美族在傳統建築與RC建築間,往往選擇方便的RC建築,且由於蘭嶼無須電費,造成空調對於環境溫度影響,忽略傳統建築原有的散熱設計,對於自然通風綠建築的理念下,需多數人學習接受前人的智慧綠建築。
本研究使用CFD軟體與縮尺模型對傳統蘭嶼居屋,進行模擬與風洞實驗,不影響原有建築情況下,假設與原建築不同的通風情況,探討室內熱舒適性,評估蘭嶼傳統建築與自然通風之關係。
由CFD模擬結果可知,若擁有涼台與工作房(夏屋)的情況下,可增加約2.6%風阻,由實驗結果可知,擁有工作房(夏屋)之情況下,將可降低約12.5%入口平均風速。
對於工作房其房中房設計,房間兩旁走道的存在性,由模擬結果可知,約可降低1℃,降低為原溫度的96.4%;由實驗結果可知,約可降低0.8℃,降低為原溫度的97.1%,證實兩旁走道的存在性對於房間內部之影響。
The Yami’s people on Lanyu often choose the convenience RC buildings between the traditional architecture and the RC architecture, because of free electricity. However, this choice also causes increased ambient temperatures due to air conditioning, in addition to ignoring the original thermal design of the traditional architecture. Most of people need to learn the ancient wisdoms about green house on natural ventilation for sustainability.
The research focuses on using both computational fluid dynamics (CFD) and scale model tests for the Yami’s building. The goal is to explore the thermal comfort and the relationship between the Lanyu building and the natural ventilation.
CFD simulation results show that an increase in drag of 2.6% for the main house with the working and summer cooling places. The experimental results show a reduction of about 12.5% in the average entrance wind speed with the addition of working place.
For the configuration with working place, the temperature of both sides of the atrium room reduces about 1 ℃ on the from the CFD simulation, a reduction to the 96.4% of the original temperature; whereas experimentally it reduces by about 0.8 ℃, a reduction to 97.1% of the original one. Hence, both sides of the room affect the temperature of the atrium room.
[1] Jean Baptiste Joseph Fourier, “The Analytical Theory of Heat,” Cambridge University Press, 1878.
[2] John Tyndall, “Six Lectures on Light: Delivered in America in 1872-1873,”Longmans, Green , 1859.
[3] S.Arrhenius , “ On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground’’ Philosophical Magazine and Journal of Science Series 5, Volume 41, April 1896, pages 237-276.
[4] “聯合國氣候框架公約,”聯合國之中譯原文,工業技術研究院能源與資源研究所,2004.
[5] United Nations Framework Convention on Climate Change “Green house Gas (GHG) Emissions Data for 1990-2003,”Bonn (GER) :UNFCCC,2005.
[6] 郭柏巖 , “住宅耗電實測解析與評估系統之研究,”成功大學建築研究所博士論文,2005.
[7] Robert R. Shrock, “Cecil And Ida Green, Philanthropists Extraordinary,” MIT Press , 1989.
[8] 林憲德, “綠建築解說手冊,”內政部建築研究所,2003.
[9] 林希娟, “蘭嶼雅美族傳統民居防風對策之研究,”成功大學建築研究所博士論文,2011.
[10] 陳興璋,“日式木構造自然通風之模擬分析,’’成功大學工程科學研究所,2010.
[11] Pei-Chun. etc. , “ Evaluation of buoyancy-driven ventilation in atrium buildings using computational fluid dynamics and reduced-scale air model,’’ Building and Environment 44, pages 1970-1979 , 2009.
[12] S. Hussain and P. H. Oosthuizen, “ Numerical investigations of buoyancy-driven natural ventilation in a simple three-storey atrium building and thermal comfort evaluation,’’ Applied Thermal Engineering 57, pages 133-146, 2013.
[13] Zhen Bu etc. , “Wind tunnel experiments on wind-induced natural ventilation rate in residential basements with areaway space,’’ Building and Environment 45,pages 2263-2272,2010.
[14] 中央氣象局統計資料.
[15]Scott Huler ” Defining the Wind: The Beaufort Scale and How a 19th-Century Admiral Turned Science into Poetry” New York Times Books,2005
[16] J. W. Axley, “Application of Natural Ventilation for US Comerical Buildings,’’GCR-01-820 NISTIR 6781, National Institute of Standards and Technology, 2001.
[17] ISO 7730, “moderate thermal environments determination of PMV and PPD indices and specification of the conditions for thermal comfort,’’ International Organisation for Standardisation,Geneva, 1994.
[18] P.O. Fanger, Thermal comfort: McGraw-Hill New York, 1972.
[19] P.O. Fanger etc., “Comfort limits for heat ceilings,’’Ashrae trans, vol. 86, no.2, pages 141-156, 1980.
[20] P.O. Fanger etc.,’ “Comfort limits for asymmetric thermal radiation,’’ Energy and Buildings, Volume 8, Issue 3, Pages 225–236, 1985.
[21] ASHRAE Standard 55-2004, “Thermal Environmental Conditions for Human Occupancy,’’American Society of Heating Refrigerating and Air-Condition Engineers, Inc.,Atlanta,2004.
[22] L. NORbert, “ Heating, Cooling, Lighting: Sustainable Design Methods for Architects,’’ Wiley, New York, 2014.
[23] “GAMBIT 2.3 User’s Guide,” Fluent Inc., Lebanon, New Hampshire,2005.
[24] “Fluent 6.3 User’s Guide,” Fluent Inc., Lebano.