| 研究生: |
吳文翔 Wu, Wen-Hsiang |
|---|---|
| 論文名稱: |
複材風力發電機葉片設計與分析 Design and Analysis of the Composite Wind Turbine Blade |
| 指導教授: |
楊文彬
Young, Wen-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 複合材料 、葉片 、設計 |
| 外文關鍵詞: | composite, blade, design |
| 相關次數: | 點閱:121 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
風力發電機葉片在運行中承受巨大且複雜的風力負載,隨著風力發電機的尺寸日益增加,如何有效率的分配材料位置,達到減輕重量與維持強度的目標,並且在使用年限內維持良好性能是很重要的問題。目前葉片材料以玻璃纖維為主,近年來碳纖維也陸續被使用在葉片上,複合材料具有高強度與質輕等優點,相當適合使用於葉片上。本論文利用Matlab建立視覺化的使用者介面,在介面中建立葉片模型與材料分佈,輸出成純文字檔以供ANSYS讀取建模,讓葉片模型的建立更快速並且降低材料設定時的繁複程序,並利用BEM(葉片元素動量理論)計算理論受力,提供ANSYS分析應力分佈,對葉片做初步的力學分析,並討論葉片內部結構尺寸對葉片受載時應力分佈的影響,進而建立材料分佈的相關知識,並且能夠對葉片做完整的結構設計。
The wind turbine blades sustain various kinds of loadings during the operation. Due to the increase of the size of the wind turbine blade, it is important to arrange the composite materials in a sufficient way to reach the optimal utilization of the material strength. Most of the composite blades are glass fibers composites, and carbon fibers are also employed in recent years. Composite materials have the advantages of high specific strength and high specific stress. This thesis uses Matlab GUI to develop a modeling interface to construct the model for the ANSYS analysis. With the aid of visualize graphics, the modeling process can be completed by some simple data inputs. The Blade Element Theory was used to predict the loadings under extreme conditions. with the stress analysis of the turbine blade, modification of the structure was performed to optimize the structural design.
[1] Roos, G., U.S. Wind Turbine Market to Reach $60.9 Billion in 2013, http://eetimes.eu/semi/210201622
[2] 行政院經濟建設委員會, 全球風力發電發展現況與展望 http://www.cepd.gov.tw/m1.aspx?sNo=0011923
[3] 游錫揚, 1997, 纖維複合材料, 國彰出版社.
[4] Liou, 劉. J.-Y., 2008, "Frp風力機葉片材料強度之探討," Master National Taiwan University, TAIPEI.
[5] Giguère, P., and Selig, M. S., 1999, "Blade Design Trade-Offs Using Low-Lift Airfoils for Stall-Regulated Hawts," National Renewable Energy Laboratory.
[6] Tangler, J. L., 2000, "The Evolution of Rotor and Blade Design," National Renewable Energy Laboratory.
[7] Veers, P. S., Ashwill, T. D., Sutherland, H. J., Laird, D. L., Lobitz, D. W., Griffin, D. A., Mandell, J. F., Musial, W. D., Jackson, K., Zuteck, M., Miravete, A., Tsai, S. W., and Richmond, J. L., 2003, "Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades," Wind Energy, 6(3), pp. 245-259.
[8] Locke, J., and Valencia, U., 2004, "Design Studies for Twist-Coupled Wind Turbine Blades," Technical Report No. SAND2004-0522, Wichita State University, National Institute for Aviation Research, Wichita, Kansas
[9] Jureczko, M., Pawlak, M., and Mezyk, A., 2005, "Optimisation of Wind Turbine Blades," Journal of Materials Processing Technology, 167(2-3), pp. 463-471.
[10] Berry, D. S., 2007, "Cx-100 Manufacturing Final Project Report," Technical Report No. SAND2007-6065, TPI Composites, Inc.
[11] Kaw, A. K., 2006, Mechanics of Composite Materials, Boca Raton, FL : Taylor & Francis.
[12] Gibson, R. F., 2007, Pinciples of Composite Material Mechanics.
[13] Manwell, J. F., Mcgowan, J. G., and Rogers, A. L., 2002, Wind Energy Explained, JOHN WILEY & SONS, LTD.
[14] Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E., 2001, Handbook of Wind Energy, JOHN WILEY & SONS , LTD.
[15] J.Laino, D., and Hansen, A. C., 2002, "Aerodyn User's Guide," National Renewable Energy Laboratory, Salt Lake.
[16] Jonkman, J. M., and Jr., M. L. B., 2005, "Fast User's Guide."
[17] Gay, D., and V.Hoa, S., 2007, Composite Materials.