| 研究生: |
詹濬瑜 Chan, Chun-Yu |
|---|---|
| 論文名稱: |
三維量測應用於快速成型小腿義肢承筒模型之驗證 The Verification of Rapid Prototyping Transtibial Socket Mold Using 3D Measuring Methods |
| 指導教授: |
許來興
Hsu, Lai-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 小腿義肢全接觸承重式與髕骨腱承重式承筒 、真空成形取模工具 、三維掃描器 、快速成型機 |
| 外文關鍵詞: | Prosthetic Socket, Total Surface Bearing, Patella Tendon Bearing, Vacuum Forming Tool, 3D Scanner, RP Machine. |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小腿義肢承筒製作為高度客製化之產品,承筒優劣取決於義肢師個人的技術與經驗,使得承筒製作的品質無法穩定。本研究嘗試採用以簡單的取模工具,簡易型的三維掃描系統和快速成型機(RP, Rapid Prototyping)建立一套成本低廉的CAD/RP承筒製作流程,以改善承筒製作品質的不穩定性。目標為簡化手工石膏修模的繁複過程,協助臨床經驗不多的義肢師能容易製作出品質穩定的小腿義肢承筒。
本研究導入髕骨韌帶承重式(PTB, Patella Tendon Bearing)承筒的概念應用在真空壓力取模工具。在患者脛骨及腓骨等非耐壓區黏貼軟墊增加空間,且依據殘肢狀態需求來評估軟墊的厚度、範圍區域及形狀大小,在壓力取模的環境下利用軟墊對髕骨韌帶實行加壓,在髕骨韌帶形成往內壓縮的空間,增加其承重力。
CAD/RP製程中所使用的設備為簡易型三維掃描機與快速成型機,因為設備上的誤差會影響最後製作的小腿義肢承筒,所以需要驗證其精度對於承筒的影響。其驗證方法為利用高精度的三維掃描機,分別對真空成形之殘肢陽模與快速成型承筒模型進行掃描,再與製程使用的三維掃瞄機和CAD承筒模型檔案分別比較其誤差,所測得的精度誤差範圍,簡易型三維掃描機平均為0.8mm,快速成型機平均在0.2mm,其形狀誤差在承筒製作上是可以接受。
本研究有兩位單側小腿截肢患者參與實驗,經由本研究建立之CAD/RP製程所製作的承筒。經患者試穿承筒,並進行介面壓力量測。由患者本身主觀的認為,在穿戴上並無疼痛的現象,行走正常無不適。而壓力實驗結果在受壓區及非受壓區的量測結果表現也較好,由實際案例的實驗成果,確認CAD/RP製程使用軟墊調整殘肢形狀後取模,採用簡易型三維掃描機及快速成型機,製作小腿義肢承筒,可以協助經驗不多的義肢裝具師,容易設計製作出患者可以舒適使用的承筒。
The prosthetic transtibial socket for a specific amputee should be custom-made and usually fabricated by a well-experienced prosthetist based on plaster-based manual method. The determination of socket shape at the pressure relief and pressure tolerant areas during the modification of plaster stump mold is the key step of the quality of socket fit. However, to cultivate a well-skilled prosthetist takes a long period of time and cases of bad socket fit to cause amputee discomfort occur from time to time. The main objective of this study is to develop an effective process that may improve the uncertainty quality of socket fabrication by employing easily-used tools to assist a less experienced prosthetist to fabricate transtibial sockets with comfortable fit.
In this research, the concept of total surface bearing (TSB) socket is employed when duplicating a stump mold by using a vacuum tool. During the step of forming stump mold, patella tendon bearing concept is adopted by sticking a crescent-shaped bar onto patella tendon area and pasting soft pads , on tibia and fibula bones so that the modified shape of duplicated stump mold can create a good fit of socket with acceptable pressure distribution on stump.
For the accuracies of simple type 3D scanner and RP machine adopted in the CAD/RP socket fabrication process , need to be verified. A higher accurate 3D scanner was used to measure the shapes of duplicated stump molds and RP socket molds and then compare to the CAD model created in a CAD socket design system. The accuracy of simple type 3D scanner is 0.8mm. And the accuracy of 0.2 mm for entry-level RP machine is acceptable for CAD/RP socket Manufacture fabrication method.
Two unilateral amputees participated in this research to verify the applicability of the CAD/RP Transtibial socket fabrication process by measuring the interface pressure distribution between socket and stump. According to amputees’ subjective opinions, there were no pains on stump while wearing the sockets fabricated by the CASD/RP process and , walking normally without discomfort. The experimental results showed that the interface pressures are reasonable. By employing easily-used tools, including a vacuum forming device together with shape modification method, simple type 3D scanner and rapid prototyping (RP) machine, an RP sockets mold can replace a plaster stump mold that is heavily relied on manual skills to fabricate transtibial socket. The proposed CAD/RP process can help a prosthetist with less experience to fabricate prosthetist prosthetic sockets with acceptable quality.
[Bits 12]Bits from Bytes BFB3000 Plus 3D Printer, (2012) from http://www.bitsfrombytes.com/content/bfb-3000-0
[Bowk 92]Bowker,J.H, (1992) Atlas of limb Prosthetics: Surgival, Prosthetic, and Rehabilitation Princuples 2nd ed.(J.W.Michael, Ed.) Rosemont, IL: Mosby Year Book(St. Louis).
[Chen 05] Chen,Q, Toshikazu, W, (2005) "A light Modulation/Demodulation Method for Real-Time 3D Imaging," Fifth International Conference on 3-D Digital Imaging and Modeling.
[Davi 12] David laserscanner,(2012) from, http://www.david-laserscanner.com
[Foor 65] Foort, J ,(1965)The patellar-tendon bearing prosthesis for below-knee amputees, a review of technique and criteria. Artificial Limbs, 9(1), 4-13.
[Gard 68] Gardner, H ,(1968). A pneumatic system for below-knee stump casting. Prosthetic International 3(4/5):12-14.
[Hand 12] HANDY SACN-REVscan,(2012) from ,http://www.creaform3d.com/
[Ishe 71] Isherwood, P.A ,(1971). The controlled pressure distribution casting procedure for patellar tendon bearing sockets. Biomechanical Research and Development Unit, Roehampton, London. pp30-33. Johansson S, Oberg T(1998). Accuracy and precision of volumetric determinations using two commercial CAD systems for prosthetics: a technical note. J of Rehabil R & D 35(1):27-33.
[John 12] Johnson ,(2012),ANATOMY & BIOMECHANICS, from, http://www.arthroscopy.com/patendrep.htm
[Jose 04] Joseph P. Lavelle, Stefan R. Schuet, Daniel J. Schuet,(2004)"High Speed 3D Scanner with Real-Time 3D Processing," 2004 IEEE International Workshop on Imaging Systems and Techniques, 2004, pp.13-17
[Murd 68] Murdoch, G ,(1968). Fitting of the below-knee amputation stump: The Dundee socket for the below-knee amputation. Prosthetics International 3(4/5):15-21.
[Romp 01] Range of Motion Project, (2001). [cited 2011 Jun 15] Available from http://www.rompglobal.org/prosthetics101.php
[Staa 87] Staats, T. B., & Lundt, J, (1987) The UCLA total surface bearing suction below-knee prosthesis. Clinical Prosthetics and Orthotics, 11, 118-130.
[Stee 05] Steen, J., P.A. Poetsma,&N.h.Thanh, (2005) “Sand-casting technique for trans-tibial prostheses,” Prosthetics and Orthotics International, Vol. 29,no. 2, Pages 165-175.
[Stei 12] B:Steinbichler Optotechnik. T-SCAN2,(2012) from http://www.steinbichler.de/de/main/t-scan_3.htm.
[Wu 03] Wu, Y. Casanova, W.K,Smith, M. E and Childress, D.S,(2003),” CIR sand casting system for trans-tibial socket” Prosthetics and Orthotics International, Vol. 27, Pages 146-152.
[Wu 09] Wu, Y. Hector, R. Casanova, K,D. William K.S, Dudley S.C, (2009), “CIR casting system for making transtibial sockets”, Prosthetics and Orthotics International, Vol. 33, No. 1, Pages 1-9.
[內10] 內政部統計處, 九十九年第七週內政統計通報(98年底列冊身心障礙者人數統計) ,(2010) from http://www.moi.gov.tw/stat/news_content.aspx?sn=3854
[皮12] 皮托科技股份有限公司,2012,快速成型機PRP3000操作手冊
[紀 10] 紀傑騰,2010,真空成行殘肢模型於膝下義肢承筒之設計與製作,國立成功大學機械工程學系,碩士論文。
[連 87] 連倚南,1987,“台灣地區截肢之流行性調查”,台灣醫界,33 卷,12 期,37頁。
[郭 04] 郭啟全,2004,快速成型原理與應用,高立圖書出版社,台北市。
[張 12] 張世薪,2012,CAD軟體之API應用於小腿義肢承筒設計模組,國立成功大學機械工程學系,碩士論文。
[曾 12] 曾明基,2012,下肢義肢介紹與應用,國立台南大學輔助科技研究所,http://www.ncku.edu.tw/~deprb/docs/seminar97_2/980320.pdf `。
[程 12] 程大維,2012,小腿義肢承筒設計之介面系統,國立成功大學機械工程學系,碩士論文。
[賴 11] 賴昆宏,2011,全接觸式小腿義肢承筒之有限元素分析與實驗評估,國立成功大學機械工程學系,碩士論文。
[謝 11] 謝旭豪,2011電腦輔助設計在全接觸式小腿義肢承筒之應用,國立成功大學機械工程學系,碩士論文。