簡易檢索 / 詳目顯示

研究生: 詹勳全
Chan, Hsun-Chuan
論文名稱: 水流通過多孔介質二維水理模式開發與應用
Development and Application of Vertical 2D Model for Turbulent Flow over Porous Medium
指導教授: 賴泉基
Lai, Chan-Ji
呂珍謀
Leu, Jan-Mou
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 185
中文關鍵詞: 明渠流紊流模式多孔介質
外文關鍵詞: Porous media, Turbulent model, Open channel flow
相關次數: 點閱:161下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在建立同時求解由純流體與多孔介質組成之混合區域內流體運動問題之垂直二維紊流數值模式,以探討混合區域流速場與紊流相關物理特性分佈的特性。另外,文獻中並無相關之紊流通過多孔介質結構物流場資料可供參考,本研究乃進行實驗室水槽試驗,配合聲波都普勒流速儀ADV(acoustic Doppler velocimeter),比較分析固體結構物與多孔介質結構物附近流場特性的差異,並提供一組完整的數據資料庫供數值模式驗證之需要。
    本研究之數值模式將求解之區域分為純流體區域與多孔介質區域,純流體區域採用雷諾平均Navier-Stokes方程式Reynolds Averaged Navier-Stokes Equation(RANS)及Lauder及Sharma(1976)提出的低雷諾數 紊流模式為控制方程式,而多孔介質區域利用巨觀的(macroscopic)概念及考慮紊流可能侵入(penetration)的效應採用福海門延伸達西模式Forchheimer-extended Darcy model及Pedras 及de Lemos(2001b)所發展之 紊流模式來求解,配合Rhie及Chow(1983)壓力振盪方法,利用SIMPLE求解程序與建立在曲線座標系統之非交錯網格,建立了高精度與高效率的數值模式。有鑑於純流體區域與多孔介質區域之交界面數值計算上處理的困難,本研究提出之速度、壓力、紊流動能及紊流動能消散率於交界面之連續邊界條件,並輔以Neale及Nader(1974)所提出之單區域法,可以迅速及簡單的處理混合區域的流體運動問題。
    垂直二維紊流數值模式被應用在紊流通過多孔介質底床與紊流通過多孔介質結構物流場之計算,在多孔介質底床之計算案例經由解析解與實驗值驗證,而多孔介質結構物之計算案例則經由實驗值驗證,兩者均顯示本研究所發展之數值模式具有良好的準確性。在針對模擬所得之流場物理特性進行討論後,對未來研究方向與本研究未盡周全之處提出相關建議。

    The characteristics associated with a hybrid domain, involving both a porous region and a clear fluid region, was not fully understood primarily due to lacking of proper mathematical treatments of different regions and the fluid/porous interface. The objective of this study was to present a numerical implementation for examining such a hybrid domain. A steady two-dimensional free surface model was developed. Additional experimental results of flow over porous structures are presented mainly for the verification purposes.
    The present model was a macroscopic model which solved the Reynolds Averaged Navier-Stokes Equation (RANS) with the low-Reynolds number turbulence model (Lauder and Spalding, 1976) for the clear fluid region and Forchheimer-extended Darcy model with the macroscopic turbulence model (Pedras and de Lemos, 2001b)for the porous region. A control-volume method of Patankar (1980) based on a curvilinear coordinate system, was applied to discretize the continuity, momentum and turbulent model equations with SIMPLE algorithm. By adopting the classical continuity interface conditions, the present model treated the hybrid domain problem with a single domain approach. The present model was applied to simulate the turbulent flow over porous bed and porous structures.
    Simulated results of the flow over the porous bed were coincided with the existing experimental data and microscopic computed data. Furthermore, the simulated results showed good agreements with the present experimental results. After the discussion of these simulated results, the possible improvements of the present model were suggested.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VII 表目錄 XII 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 前人研究 4 1-2-1試驗方析 6 1-2-2多孔介質內部流體描述方程式之研究 7 1-2-3交界面內部邊界條件處理之研究 12 1-3 研究目的 14 1-4 本文架構 16 第二章 理論基礎 18 2-1 積分運算子 19 2-2 純水體區域控制方程式 21 2-3 多孔介質區域控制方程式 22 2-4 純水體區域紊流模式 25 2-5 多孔介質區域紊流模式 28 2-6 邊界條件 29 2-6-1 上下游邊界條件 30 2-6-2 固體邊界條件 31 2-6-3 自由液面邊界條件 33 2-6-4 交界面邊界條件 34 第三章 數值方法 43 3-1 控制方程式的通式 44 3-2 方程式離散 47 3-3 速度與壓力耦合 51 3-4 壓力的修正 55 3-5 交界面的處理 56 3-6 收斂條件 57 3-7 殘餘量 58 第四章 紊流通過多孔介質底床分析 63 4-1 層流通過多孔介質底床之驗證分析 64 4-1-1 計算條件與起始猜值 65 4-1-2 網格獨立 67 4-1-3 結果比較 70 4-2 紊流通過多孔介質底床之驗證分析 74 4-2-1 邊界條件與起始猜值 75 4-2-2 橫桿組成多孔介質底床之檢定 77 4-2-3 圓形顆粒組成多孔介質底床之檢定 81 4-2-4 討論 83 4-3 多孔介質底床對紊流物理特性的影響分析 86 4-3-1 流速分佈 87 4-3-2 紊流動能 95 4-3-3 雷諾剪應力 99 4-3-4 討論 103 第五章 紊流通過多孔介質與固體結構物比較分析 105 5-1 紊流通過多孔介質結構物試驗 108 5-1-1 試驗水槽與佈置 108 5-1-2 試驗儀器 110 5-1-3 流速資料擷取與處理 111 5-1-4 多孔介質結構物模型化與佈置 113 5-1-5 試驗條件 115 5-2 流場概況 116 5-3 試驗結果分析 118 5-4 討論 133 第六章 紊流通過多孔介質結構物之數值模擬 135 6-1 邊界條件與起始猜值 135 6-2 計算結果 136 6-3 紊流通過多孔介質結構物之流場分析 156 6-3-1 流場特性 156 6-3-2 流線分佈 157 6-3-3 紊流動能 158 6-4 討論 162 第七章 結論與建議 163 7-1 模式特點 163 7-2 結論 164 7-3 建議 166 參考文獻 167 附錄A 181 誌謝 183 自述 184

    1. Alazmi, B. and K. Vafai, 2001, Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Int. J. Heat Mass Transfer, Vol. 44, pp. 1735-49.
    2. Alfrink, B. J. and L. C. Van Rijn, 1983. Two-equation turbulence model for flow in trenches. J. of Hydraul. Engrg. Vol. 109(1), 945-958.
    3. Ansar, M., and T. Nakato, 2001. Experimental study of 3d pump-intake flows with and without cross flow. J. of Hydraul. Engrg., Vol. 127(10), pp. 825-834.
    4. Antohe, B. V., and J. L. Lage, 1997. A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transfer, Vol. 40, pp. 3013-3024.
    5. Beavers, G. S., and D. D. Joesph, 1967. Boundary conditions at a naturally permeable wall. J. Fluid Mech., Vol. 30(1), pp. 197-207.
    6. Beavers, G. S., E. M. Sparrow, and R. A. Magnuson, 1970. Parallel flow in a channel and a bounding porous medium. J. Basic Engrg., Vol. 92, pp. 843-848.
    7. Bradshaw, P. and F. Y. F. Wong, 1972. The Reattachment and Relaxation of Turbulent Shear Layer, Journal of Fluid Mechanics, Vol. 52, pp. 113-135.
    8. Bratty, M. and W. Shyy, 1986. A study of recirculating flow computation using body-fitted coordinates: consistency aspect and mesh skewness. Numerical Heat Transfer, vol. 9, pp. 559-574.
    9. Breugem, W. P. and B. J. Boersma, 2005. Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Physics of fluids, Vol. 17(2), pp. 025103-1~15.
    10. Brinkmann, H. C., 1947. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., Vol. A1, pp. 27-34.
    11. Carollo, F. G., V. Ferro, and D. Termini, 2002. Flow Velocity Measurements in Vegetated Channels. J. of Hydraul. Engrg., Vol. 128(7), pp. 664-673.
    12. Chan, E. C., F. S. Lien, and M. M. Yavonovich, 2000, ‘‘Numerical Study of Forced Flow in a Back-Step Channel Through Porous Layer,’’ Proc. of 34th ASME-National Heat Transfer Conference (on CD-ROM), ASME-HTD-1463CD, Paper NHTC2000-12118, ISBN:0-7918-1997-3, Pittsburgh, Pennsylvania, August 20-22.
    13. Chen, C. J., and S. Y. Jaw, 1998. Fundamentals of Turbulence Modeling, Taylor & Francis. Washington, D. C.
    14. Cheng, X. and Y. M. Chiew, 1998. Modified Logarithmic Law for Velocity Distribution Subjected to Upward Seepage. J. Env. Engrg., Vol. 124(12), pp. 1235-1241.
    15. Cheng, X. and Y. M. Chiew, 2004. Velocity Distribution of Turbulent Open-Channel Flow with Bed Suction. J. Env. Engrg., Vol. 130(2), pp. 140-148.
    16. Chien, K. Y., 1982, Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. American institute of Aeronautics and Astronautics Journal, Vol. 20(1), pp. 33-38.
    17. Choi, C. Y. and P. M. Waller, 1997. Momentum transport mechanism for water flow over porous media. J. Env. Engrg., Vol. 123(8), pp. 792-799.
    18. Choi, C. Y. and S. J. Kim, 1994. Modeling of boundary conditions at the soil and water interface. Proc., ASAE Int. Winter Meeting, Am. Soc. Agric. Engrs., St. Joseph. Mich.
    19. Choi, C. Y., and P. M. Waller, 1997. Momentum transport mechanism for water flow over porous media. J. Env. Engrg., Vol. 123(8), pp. 792-799.
    20. Chu, Y. H. and L. W. Gelhar, 1972. Turbulent pipe flow with granular permeable boundaries. Rep. No. 148, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Dept. of Civil Engineering, M.I.T., Cambridge, Mass.
    21. Dancey, C. L., M. Balakrishnan, P. Diplas, and A. N. Papanicolaou, 2000. The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow. Experiments in Fluids, Vol. 29(5), pp. 402-410.
    22. Dancey, C. L., M. Balakrishnan, P. Diplas, and A. N. Papanicolaou, 2000. The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow. Experiments in Fluids, Vol. 29(5), pp. 402-410.
    23. de Lemos, M. J. S. and M. H. J. Pedras, 2000. Simulation of turbulent flow through hybrid porous medium-clear fluid domains. Proc. ASME Heat Transfer Div. Vol. 5. pp. 113-122.
    24. de lemos, M. J. S., 2005. Turbulent Kinetic Energy Distribution across the Interface between a Porous Medium and a Clear Region. Intern. Comm. Heat and Mass Transfer, Vol. 32(1-2), pp. 107-1 15.
    25. Dutoya, D. and P. Michard, 1981. A program for calculating boundary layers along compressor and turbine blades. In R. W. Lewis, K. Morgan, and O. C. Zienidewicz. Numerical methods in heal transfer. New York, Wiley.
    26. Eaton, J. K. and J. P. Johnston, 1981. A Review of Research on Subsonic Turbulent Flow Reattachment. AIAA Journal, Vol. 19, pp. 1093-1100.
    27. Ergun, S., 1952. Fluid Flow Through Packed Columns. Chem. Eng. Prog., Vol. 48, pp. 89-94.
    28. Forchheimer, P., 1901. Wasserbewegung durch bodem, Z. Ver. Deutsch, Vol. 45.
    29. Fu, W. S. and S. F. Chen, 2002. A numerical study of heat transfer of a porous block with the random porosity model in a channel flow. Heat and Mass Transfer, Vol. 38(7-8), pp. 695-704.
    30. Gao, Y. and W. K. Chow, 2005. Numerical studies on air flow around a cube, J. Wind Engrg. Ind. Aerodynamics, Vol. 93(2), pp. 115-135.
    31. Getachew, D., W. J. Minkowycz, and J. L. Lage, 2000. A modified form of the k- ε model for turbulent flow of an incompressible fluid in porous media. Int. J. Heat Mass Transfer, Vol. 43, pp. 2909-2915.
    32. Gratton, L., V. S. Travkin, and I. Catton, 1994. Numerical solution of turbulent heat and mass transfer in a stratified geostatistical porous layer for high permeability media. ASME Proceedings HTD-Vol. 41, pp. 1-14.
    33. Gupte, S. K. and S. G. Advani, 1997. Flow near the permeable boundary of a porous medium: An experimental investigation using LDA. Experiments in Fluids, Vol. 22(5), pp. 408-422.
    34. Hahn, S., J. Je, and H. Choi, 2002. Direct numerical simulation of turbulent channel flow with permeable walls. J. Fluid Mech., Vol. 450, pp. 259-285.
    35. Hart D.D., B. D. Clark, and A. Jasentuliyana, 1996. Fine-scale field measurement of benthic flow environments inhabited by stream invertebrates. Limnology and Oceanography, Vol. 4, pp. 297-308.
    36. Hassid, S. and M. Porch, 1975. A turbulent energy model for flow with drag reduction. Transactions of the American Society of Mechanical Engineering: Journal of Fluid Engineering, vol. 97, pp.234-241.
    37. Hoffman, G. H., 1975, Improved form of the low Reynolds number k-e turbulence model. Physics of Fluids, Vol. 18, pp. 309-312.
    38. Huang, C. J., H. H. Chang, and H. H. Hwung, 2003. Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engrg., Vol. 49(1-2), pp. 1-24.
    39. Hussein, H. and R. Martinuzzi, 1996. Energy balance for turbulent flow around a surface mounted cube placed in a channel, Phys. Fluids, Vol. 8(3), pp. 764-780.
    40. Hsu, C. T. and P. Cheng, 1990. Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, 33(8), 1587–1597.
    41. James, D. F., and A. M. Davis, 2001. Flow at the interface of a model fibrous porous medium. J. Fluid Mech., 426, 47–72.
    42. Kaviany, M. 1991, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
    43. Kim, J., P. Moin, and R. Moser, 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., Vol. 177, pp. 133-166.
    44. Kuwahara, F. and A. Nakayama, 1998. Numerical modeling of non-Darcy convective flow in a porous medium. Proc. 11th Int. Heat Transf. Conf., Kyongyu, Korea, August 23-28.
    45. Kuwahara, F., Y. Kameyama, S. Yamashita, and A. Nakayama, 1998. Numerical modeling of turbulent flow in porous media using a spatially periodic array. J. Porous Media, Vol. 1, pp. 47-55.
    46. Kuznetsov, A. V., 1997. Influence of the stress jump condition at the porous-medium clear-fluid interface on a flow at a porous wall. Int. Commun. Heat Mass Transfer, Vol. 24(3), pp. 401-417.
    47. Lage, J. L., 1998. The fundamental theory of flow through permeable media from Darcy to turbulence. in Transport Phenomena in Porous Media, D. B. Ingham and I. Pop, eds., Elsevier Science, ISBN: 0-08-042843-6, pp.446.
    48. Lam, C. K. G. and K. Bremhorst, 1981. A modified form of the k-e model for predicting wall turbulence. Transactions of the American Society of Mechanical Engineering, Vol. 103(September), pp. 456-60.
    49. Larichkin, V. V. and S. N. Yakovenko, 2003. Effect of boundary-layer thickness on the structure of a near-wall flow with a two-dimensional obstacle. J. Appl. Mech. Tech. Phys., Vol. 44(3), pp. 365–372.
    50. Launder, B. E. and D. B. Spalding, 1974. The numerical calculation of turbulence flows. Computer Methods in Applied Mechanics and Engineering, Vol. 3(2), pp. 269-289.
    51. Launder, B. E. and B. I. Sharma, 1974. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, Vol. 1, pp. 131-38.
    52. Lee, K. and J. R. Howell, 1987. Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field. Proc. ASME-JSME Thermal Eng. Joint Conf, 2. 377-386.
    53. Lee, K., and J. R. Howell, 1987. Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field. Proc. ASME-JSME Thermal Eng. Joint Conf., Vol. 2. pp. 377-386.
    54. Li, B., and V. K. Garga, 1998. Theoretical solution for seepage flow in overtopped rockfill. J. Hydraul. Engrg., Vol. 124(2), 213–217.
    55. Lundgern, T. S., 1972, Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech., Vol. 51(1), pp. 273-299.
    56. MacDonald, I. F., M. S. El-Sayed, K. Mow, and F. A. L. Dullien, 1979. Flow through porous media: The Ergun equation revisited.” Ind. and Engrg Chemistry, Vol. 18, pp. 199-208.
    57. Maeno, S., K. Michioku, S. Morinaga, and K. Kikuchi, 2004. Flow analysis around a rubble mound weir. 水工學論文集, Vol. 48, pp. 829-834. (in Japanese)
    58. Massarotti, N., P. Nithiarasu, and A. Carotenuto, 2003. Microscopic and macroscopic approach for natural convection in enclosures filled with fluid saturated porous medium. Int. J. Num. Meth. Heat Fluid Flow, Vol. 13(7), pp. 862-886.
    59. Masuoka, T. and Y. Takatsu, 1996. Turbulence model for flow through porous media. Int. J. Heat Mass Transfer, Vol. 39, pp. 2803-2809.
    60. McNair, J.N., J. D. Newbold, and D. D. Hart, 1997. Turbulent transport of suspended particles and dispersing benthic organisms: How long to hit bottom?. Journal of Theoretical Biology, Vol. 188(1), pp. 29-52.
    61. Michelassi, V. and T. H. Shih, 1991. Low Reynolds number two-equation modeling of turbulent flows. NASA Tech. Memo. 104368, May.
    62. Michioku, K., S. Maeno, T. Furusawa, and M. Haneda, 2005. Discharge through a permeable rubble mound weir. J. Hydraul. Engrg., Vol. 131(1), pp. 1-10.
    63. Miglio, E., A. Quarteroni, and F. Saleri, 2003. Coupling of free surface and groundwater flows. Computers and Fluids, Vol. 32, pp. 73-83.
    64. Munoz-Goma, R. J. and L. W. Gelhar, 1968. Turbulent pipe flow with rough and porous walls. Rep. No. 109, Hydrodynamics Laboratory, Dept. of Civil Engineering, M.I.T., Cambridge, Mass.
    65. Nagano, Y. and M. Hishida, 1987. Improved form of the k-e model for wall turbulence shear Rows. ASME J. Fluids Eng., Vol. 109(June), pp. 156-160.
    66. Nakayama, A. and F. Kuwahara, 1999. A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Eng., Vol. 121, pp. 427-433.
    67. Neale, G. and W. Nader, 1974. Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engrg., Vol. 52, pp. 475- 478.
    68. Nezu, I., 1977. Turbulent structure in open-channel flows. PhD thesis, Dept. of Civil Engineering, Kyoto Univ., Japan.
    69. Nield, D. A., K. Vafai, and S. J. Kim, 1996. Closure statements on the Brinkman- Forchheimer-extended Dracy model, Int. J. Heat Fluid Flow, Vol. 17, pp. 34-35.
    70. Nield, D.A. and A. Bejan, 1992, Convection in Porous Media, Springer-Verlag, New York.
    71. Ochoa-Tapia, J. A. and S. Whitaker, 1995a. Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: Theoretical development. Int. J. Heat Mass Transfer, Vol. 38, pp. 2635-2646.
    72. Ochoa-Tapia, J. A. and S. Whitaker, 1995b. Momentum transfer at the boundary between a porous medium and a homogeneous fluid II: Comparison with experiment. Int. J. Heat Mass Transfer, Vol. 38, pp. 2647-2655.
    73. Ochoa-Tapia, J. A. and S. Whitaker, 1998. Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects, J. Porous Media, Vol. 1, pp. 201-217.
    74. Patankar, S. V. (1980). Numerical heat transfer and fluid flow, Hemisphere Publishing Corp., New York.
    75. Patel, V. C., W. Rodi, and D. Scheuerer, 1984, Turbulence model for near-wall and low Reynolds number flow: A review. American Institute of Aeronautics and Astronautics Journal, Vol. 23(9), pp. 1308-1319.
    76. Pedras, M. H. J. and M. J. S. de Lemos, 1999. On volume and time averaging of transport equations for turbulent flow in porous media,’’ Proc. of 3rd ASME/JSME Joint Fluids Engineering Conference (on CD-ROM), ASMEFED-248, Paper FEDSM99-7273, ISBN 0-7918-1961-2, San Francisco, California, July 18-23.
    77. Pedras, M. H. J. and M. J. S. de Lemos, 2001a. Simulation of turbulent flow in porous media using a spatially periodic array and a low Re two-equation closure. Numerical Heat Transfer Part A, Vol. 39(1), 35-59.
    78. Pedras, M. H. J. and M. J. S. de Lemos, 2001b. On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptic rods. Journal of Fluids Engineering, Vol. 123 (4), 941-947.
    79. Pedras, M. H. J. and M. J. S. de Lemos, 2003. Computation of turbulent flow in porous media using a low Reynolds k-ε model and an infinite array of transversally-displaced elliptic rods. Numerical Heat Transfer Part A- Applications, Vol. 43(6), pp. 585-602.
    80. Pedras, M. H. J., and M. J. S. de Lemos, 2000. On the definition of turbulent kinetic energy for flow in porous media. Int. Commun. Heat Mass Transfer, Vol. 27(2), pp. 211-220.
    81. Pedras, M. H. J., and M. J. S. de Lemos, 2001b. Macroscopic turbulence modeling for incompressible flow through undeformable porous media. Intern. J. Heat and Mass Transfer, Vol. 44(6), pp. 1081-1093.
    82. Prandtl, L., 1925. Uber die ausgebildete turbulenz (On the fully developed turbulence). ZAMM ( Journal of Applied Mathematics and Mechanics), Vol. 5, pp. 136-139.
    83. Prinos, P., D. Sofialidis, and E. Keramaris, 2003. Turbulent flow over and within a porous bed. J. of Hydraul. Engrg. Vol. 129(9), 720-733.
    84. Reynolds, W. C. 1970, Computation of turbulent flow: State of the art. Tech. Rep., Report MD-27, Mechanical Engineering Department, Stanford University.
    85. Rhie, C. M. and W. L. Chow, 1983. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA Journal, Vol. 21(11), pp. 1525-1532.
    86. Robson, B. J., E. T. Chester, and J. A. Davis, 1999. Manipulating the intensity of near-bed turbulence in rivers: effects on benthic invertebrates. Freshwater Biology, Vol. 42, pp. 645-653.
    87. Rocamora, Jr., F. D. and M. J. S. de Lemos, 2000a. Heat transfer in suddenly expanded flow in a channel with porous inserts. Proc. of IMECE2000– ASME–Intern. Mech. Eng. Congr., ASME-HTD-366-5, pp. 191–195, ISBN:0-7918-1908-6, Orlando, Florida, November 5-10.
    88. Rocamora, Jr., F. D., and M. J. S. de Lemos, 2000b. Prediction of velocity and temperature profiles for hybrid porous medium-clean fluid domains. Proc. Of CONEM2000–National Mechanical Engineering Congress (on CD-ROM), Natal, Rio Grande do Norte, Brazil, August 7-11.
    89. Ruff, J. F. and L. W. Gelhar, 1970. Porous boundary effects in turbulent shear flow. Rep. No. 126, Water Resources and Hydrodynamics Laboratory, Dept. of Civil Engineering, M.I.T., Cambridge, Mass.
    90. Samani, H. M. V., J. M. V. Smani, and M. Shaiannejad, 2003. Reservoir routing using steady and unsteady flow through rockfill dams. J. Hydraul. Engrg., Vol. 129(6), pp. 448–454.
    91. Shimizu, Y., T. Tsujimoto, and H. Nakagawa, 1990. Experimental and Macroscopic modeling of flow in highly porous medium under free-surface flow. J. of Hydroscience and Hydraulic. Engrg, Vol. 8(1), pp. 69-78.
    92. Silva, R. A. and M. J. S. de lemos, 2003. Numerical Analysis of the Stress Jump Interface Condition for Laminar Flow over a Porous Layer. Numerical Heat Transfer Part A, Vol. 43(6), pp. 603-617.
    93. Silva, R. A. and M. J. S. de lemos, 2003a. Numerical Analysis of the Stress Jump Interface Condition for Laminar Flow over a Porous Layer. Numerical Heat Transfer Part A, Vol. 43(6), pp. 603-617.
    94. Silva, R. A. and M. J. S. de lemos, 2003b. Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transfer, Vol. 46, pp. 5113-5121.
    95. Steinberger, N. and M. Hondzo, 1999. Diffusional mass transfer at sediment-water interface. J. Env. Engrg., Vol. 125(2), pp. 192-199.
    96. Svensson, U. and L. Rahm, 1991. Towards a mathematical model of oxygen transfer to and within bottom sediments. J. Geophys. Res., [Atmos.], Vol. 1996, pp. 2777-2783.
    97. Takatsu, Y. and T. Masuoka, 1998. Turbulent phenomena in flow through porous media. J. Porous Media, Vol. 3, pp. 243-251.
    98. Travkin, V. S. and I. Catton, 1992. Models of turbulent thermal diffusivity and transfer coefficients for a regular packed bed of spheres. Proc. 28th National Heat Transfer Conference, San Diego, C-4, ASME-HTD-193, 15-23.
    99. Travkin, V. S. and I. Catton, 1995. A two temperature model for turbulent flow and heat transfer in a porous layer. ASME J. Fluids Eng., Vol. 117, pp. 181-188.
    100. Travkin, V. S. and I. Catton, 1998. Porous media transport descriptions–non-local, linear, and non-linear against effective thermal/fluid properties. Adv. Colloid Interface Sci., Vol. 76–77, pp. 389-443.
    101. Travkin, V. S., I. Catton, and L. Gratton, 1993. Single-phase turbulent transport in prescribed non-isotropic and stochastic porous media. Heat Transfer in Porous Media, ASME-HTD-240, 43-48.
    102. Travkin, V. S., I. Catton, and L. Gratton, 1993. Single-phase turbulent transport in prescribed non-isotropic and stochastic porous media. Heat Transfer in Porous Media, ASME-HTD-240, pp. 43-48.
    103. Travkin, V. S., K. Hu, and I. Catton, 1999. Turbulent kinetic energy and dissipation rate equation models for momentum transport in porous media. Proc. 3rd ASME/JSME Joint Fluids Engineering Conference (on CD-ROM), Paper FEDSM99-7275, San Francisco, California, 18-23 July.
    104. Vafai, K. and C. L. Tien, 1981. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transfer, Vol. 24, pp. 195-203.
    105. Vafai, K. and R. Thiyagaraja, 1987. Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transfer, Vol. 30, pp.1391-1405.
    106. Vafai, K. and S. J. Kim, 1990. Analysis of surface enhancement by a porous substrate. ASME J. Heat Transfer, Vol. 112, pp. 700-706.
    107. Vafai, K., 1984. Convective Flow and Heat Transfer in Variable-Porosity Media. J. Fluid Mech., Vol. 147, pp. 233-259.
    108. Vafai, K., 1986. Analysis of the Channeling Effect in Variable Porosity Media. ASME J. Energy Resour. Technol., Vol. 108, pp. 131-139.
    109. Vafai, K., and S. J. Kim, 1989. Forced convection in a channel filled with a porous medium: An exact solution. ASME J. Heat Transfer, Vol. 111, pp. 1103-1106.
    110. Voulgaris G. and J. H. Trowbridge 1998. Evaluation of the acoustic Doppler velocimeter for turbulence measurements. Journal of Atmospheric and Oceanic Technology, Vol. 15, pp. 272-289.
    111. Wang, H. and E. S. Takle, 1995. Boundary-layer flow and turbulence near porous obstacles. Boundary-Layer Meteorology, Vol. 74, pp. 73-88.
    112. Whitaker, S., 1961. Diffusion and dispersion in porous media. AIChE J., Vol. 13, pp. 420-427.
    113. Zippe, H. J. and W. H. Graf, 1983. Turbulent boundary-layer flow over permeable and nonpermeable rough surfaces. J. Hydraul. Res., Vol. 21(1), pp. 51-65.
    114. 林呈、顏光輝、陳謹偉、黃文彥,1998,「人工魚礁周邊之流場特性與沖刷機制之試驗研究」,第二十屆海洋工程研討會論文集,pp. 305-312。
    115. 張興漢、黃清哲、張舜鈞、丁舜臣、黃煌煇,2002,「孤立波與透水潛堤之互制作用分析」,中國土木水利工程學刊,第十四卷,第三期, 503-514。
    116. 陳建文,2000,「水流通過橋下保護工之流速分佈探討」,國立成功大學水利及海洋工程學系碩士論文。
    117. 陳國棠,2003,「卵石及其構造物之物理性質探討」,中華大學土木工程學系碩士論文。
    118. 黃偉哲,2001,「水流通過透水式橋墩保護工之流況分析」,國立成功大學水利及海洋工程學系碩士論文。
    119. 董志昌,2002,「水流通過橋墩保護工之流況比較分析」,國立成功大學水利及海洋工程學系碩士論文。
    120. 顏志偉,1995,「複雜自由液面紊流之模擬與分析」,國立成功大學水利及海洋工程學系博士論文。

    下載圖示 校內:立即公開
    校外:2006-08-08公開
    QR CODE