簡易檢索 / 詳目顯示

研究生: 吳冠賢
Wu, Guan-Xian
論文名稱: 膠原蛋白凝膠促進子宮肌瘤細胞聚集
Collagen gel induces formation of aggregation in leiomyomal cell in vitro
指導教授: 陳麗玉
Chen, Lih-Yuh
王仰高
Wang, Yang-Kao
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 44
中文關鍵詞: 膠原蛋白凝膠子宮肌瘤細胞細胞聚集基質軟硬度
外文關鍵詞: collagen gel, leiomyomal cell, cell aggregation, ECM stiffness
相關次數: 點閱:120下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 組織完整性主要是受到周圍環境因子的調控,而這些因子包括了化學因子和物理因子,如生長因子或組織軟硬度。然而一班的體外培養技術是將細胞培養在塑膠培養皿上,但塑膠培養皿其物理特性與體內組織內有很大的差距。近期的研究發展出了幾種水膠的體外培養系統,如膠原蛋白凝膠,可以模擬出體內組織之軟硬度。之前的研究發現,膠原蛋白凝膠可以促進三維組織般的多細胞結構,說明膠原蛋白凝膠較一般體外培養系統更接近於體內的環境。
    子宮肌瘤是一種良性腫瘤。過去的研究發現,子宮肌瘤細胞在體外長期培養下會形成球狀的聚集,此類聚集被認為是子宮肌瘤細胞的一個特性。對於細胞聚集的現象,在以往的研究均著重在化學因子或遺傳因子的影響。然而細胞外基質軟硬度對於子宮肌瘤細胞聚集的調控則並不清楚。因此,我們想探討細胞外基質軟硬度在子宮肌瘤細胞形成聚集的過程中所扮演的角色。首先我們研究子宮肌瘤細胞培養於膠原蛋白凝膠培養系統是否較易形成聚集。結果顯示,在膠原蛋白凝膠上相較於培養皿的細胞聚集面積較大且密度較高,並且細胞聚集的速度較快。為了進一步探討細胞基質軟硬度對於子宮肌瘤細胞聚集的影響,我們使用不同來源的膠原蛋白凝膠。結果顯示在較軟的膠原蛋白凝膠上,會加速子宮肌瘤細胞的聚集。我們發現子宮肌瘤細胞會使得膠原蛋白凝膠收縮,由此推測細胞收縮力可能參與在細胞聚集的現象當中。而在給予Rho-kinase抑制劑後,膠原蛋白凝膠上之細胞聚集也受到抑制。以上結果顯示了細胞外基質的軟硬度和細胞的收縮力調控子宮肌瘤細胞的聚集。

    The maintenance of tissue integrity is mainly controlled by the environmental cues, such as chemical signals and physical inputs, i.e., tissue stiffness. However, by using in vitro culture technique, cells are always cultured on plastic dish which may not be relevent to the in vivo physical property of tissue. Recent studies have developed several hydrogel systems, such as collagen gel to mimic physiological stiffness of tissue. It has been shown that collagen gel induces three-dimensional tissue-like multicellular structures which are more relevent to in vivo system.
    Uterine leiomyoma is a benign tumor grown in myometrium. Smooth muscle cells that derived from leiomyomal form ball-like aggregates whereas normal myometrial cell does not, suggesting that the formation of aggregation is one the major characteristics of leiomyomal cell in vitro. While much effort has been focused on the soluble/genetic factors in the formation of ball-like aggregrates, little is known on ECM stiffness in the regulation of the ball-like aggregrates in leiomyomal cells. Thus, my project is to investigate the role of ECM stiffness in the regulation of ball-like aggregrates in leiomymal cells. First I investigated whether collagen gel culture system induces aggregations of leiomyomal cell. The results showed that leiomyomal cell formed more aggregates when cells were grown on collagen gel but not collagen-coated dish. To further investigate the degree of collagen rigidity affected formation of aggregates, I performed different collagen gels from different origins. The results showed that leiomyomal cell developed cell aggregates on softer collagen gel earlier than stiff one. Leiomyomal cell contracted and resulted in shrinkage of collagen gel, suggesting the involvement of cell contractility in leiomyomal cell aggregation on collagen gel. Pharmacologic inhibition of myosin-II related contractility inhibited the leiomyomal cell aggregation on collagen gel. These results suggest that physical property of substratum and cell contractility regulated formation of leiomyomal cell aggregation.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VI 緒論 1 材料與方法 9 結果 12 討論 20 參考文獻 23 圖表 27 作者簡歷 44

    Al-Hendy A, Lee EJ, Wang HQ, Copland JA (2004) Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice. Am J Obstet Gynecol 191:1621-1631.
    Brandon DD, Erickson TE, Keenan EJ, Strawn EY, Novy MJ, Burry KA, Warner C, Clinton GM (1995) Estrogen receptor gene expression in human uterine leiomyomata. J Clin Endocrinol Metab 80:1876-1881.
    Butcher JT, Nerem RM (2004) Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells. J Heart Valve Dis 13:478-485; discussion 485-476.
    Califano JP, Reinhart-King CA (2008) A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly. Cell Mol Bioeng 1:122-132.
    Chegini N, Ma C, Tang XM, Williams RS (2002) Effects of GnRH analogues, 'add-back' steroid therapy, antiestrogen and antiprogestins on leiomyoma and myometrial smooth muscle cell growth and transforming growth factor-beta expression. Mol Hum Reprod 8:1071-1078.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425-1428.
    Cramer SF, Patel A (1990) The frequency of uterine leiomyomas. Am J Clin Pathol 94:435-438.
    Deasy BM, Qu-Peterson Z, Greenberger JS, Huard J (2002) Mechanisms of muscle stem cell expansion with cytokines. Stem Cells 20:50-60.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139-1143.
    Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877-887.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677-689.
    Eyrich D, Wiese H, Maier G, Skodacek D, Appel B, Sarhan H, Tessmar J, Staudenmaier R, Wenzel MM, Goepferich A, Blunk T (2007) In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds. Tissue Eng 13:2207-2218.
    Ezzell RM, Toner M, Hendricks K, Dunn JC, Tompkins RG, Yarmush ML (1993) Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes. Exp Cell Res 208:442-452.
    Georges PC, Janmey PA (2005) Cell type-specific response to growth on soft materials. J Appl Physiol 98:1547-1553.
    Guo WH, Frey MT, Burnham NA, Wang YL (2006) Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 90:2213-2220.
    Hong H, Stegemann JP (2008) 2D and 3D collagen and fibrin biopolymers promote specific ECM and integrin gene expression by vascular smooth muscle cells. J Biomater Sci Polym Ed 19:1279-1293.
    Hu PP, Shen X, Huang D, Liu Y, Counter C, Wang XF (1999) The MEK pathway is required for stimulation of p21(WAF1/CIP1) by transforming growth factor-beta. J Biol Chem 274:35381-35387.
    Hunter DS, Klotzbucher M, Kugoh H, Cai SL, Mullen JP, Manfioletti G, Fuhrman U, Walker CL (2002) Aberrant expression of HMGA2 in uterine leiomyoma associated with loss of TSC2 tumor suppressor gene function. Cancer Res 62:3766-3772.
    Jessop HL, Rawlinson SC, Pitsillides AA, Lanyon LE (2002) Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31:186-194.
    Jiang ST, Liao KK, Liao MC, Tang MJ (2000) Age effect of type I collagen on morphogenesis of Mardin-Darby canine kidney cells. Kidney Int 57:1539-1548.
    Jolley S (2009) An overview of uterine fibroids. Nurs Stand 24:44-48.
    Joseph DS, Malik M, Nurudeen S, Catherino WH (2010) Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3. Fertil Steril 93:1500-1508.
    Kim BS, Nikolovski J, Bonadio J, Mooney DJ (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17:979-983.
    Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245-248.
    Klein EA, Yin L, Kothapalli D, Castagnino P, Byfield FJ, Xu T, Levental I, Hawthorne E, Janmey PA, Assoian RK (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19:1511-1518.
    Kobayashi Y, Nikaido T, Zhai YL, Iinuma M, Shiozawa T, Shirota M, Fujii S (1996) In-vitro model of uterine leiomyomas: formation of ball-like aggregates. Hum Reprod 11:1724-1730.
    Kumper S, Marshall CJ (2011) ROCK-driven actomyosin contractility induces tissue stiffness and tumor growth. Cancer Cell 19:695-697.
    Lazar A, Mann HJ, Remmel RP, Shatford RA, Cerra FB, Hu WS (1995) Extended liver-specific functions of porcine hepatocyte spheroids entrapped in collagen gel. In Vitro Cell Dev Biol Anim 31:340-346.
    Lee BS, Nowak RA (2001) Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab 86:913-920.
    Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE (2006) Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 79:1-5.
    Ligon AH, Morton CC (2000) Genetics of uterine leiomyomata. Genes Chromosomes Cancer 28:235-245.
    Masters KS, Shah DN, Walker G, Leinwand LA, Anseth KS (2004) Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J Biomed Mater Res A 71:172-180.
    Meredith JE, Jr., Fazeli B, Schwartz MA (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4:953-961.
    Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164-2174.
    Montesano R, Orci L, Vassalli P (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648-1652.
    Norian JM, Owen CM, Taboas J, Korecki C, Tuan R, Malik M, Catherino WH, Segars JH (2012) Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma. Matrix Biol 31:57-65.
    Otubu JA, Buttram VC, Besch NF, Besch PK (1982) Unconjugated steroids in leiomyomas and tumor-bearing myometrium. Am J Obstet Gynecol 143:130-133.
    Patel PN, Gobin AS, West JL, Patrick CW, Jr. (2005) Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng 11:1498-1505.
    Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204:198-209.
    Rogers R, Norian J, Malik M, Christman G, Abu-Asab M, Chen F, Korecki C, Iatridis J, Catherino WH, Tuan RS, Dhillon N, Leppert P, Segars JH (2008) Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol 198:474 e471-411.
    Sawada Y, Sheetz MP (2002) Force transduction by Triton cytoskeletons. J Cell Biol 156:609-615.
    Smith PG, Deng LH, Fredberg JJ, Maksym GN (2003a) Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am J Physiol-Lung C 285:L456-L463.
    Smith PG, Roy C, Zhang YN, Chauduri S (2003b) Mechanical stress increases RhoA activation in airway smooth muscle cells. Am J Resp Cell Mol 28:436-442.
    Stewart EA (2001) Uterine fibroids. Lancet 357:293-298.
    Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20:4639-4647.
    Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69:4167-4174.
    Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265-275.
    Wang YH, Chiu WT, Wang YK, Wu CC, Chen TL, Teng CF, Chang WT, Chang HC, Tang MJ (2007) Deregulation of AP-1 proteins in collagen gel-induced epithelial cell apoptosis mediated by low substratum rigidity. J Biol Chem 282:752-763.
    Wei WC, Lin HH, Shen MR, Tang MJ (2008) Mechanosensing machinery for cells under low substratum rigidity. Am J Physiol Cell Physiol 295:C1579-1589.
    Wu CC, Ding SJ, Wang YH, Tang MJ, Chang HC (2005) Mechanical properties of collagen gels derived from rats of different ages. J Biomater Sci Polym Ed 16:1261-1275.
    Yamamura N, Sudo R, Ikeda M, Tanishita K (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13:1443-1453.
    Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60:24-34.

    下載圖示 校內:2014-09-05公開
    校外:立即公開
    QR CODE