研究生: |
陳瑞晟 Chen, Ray-Cheng |
---|---|
論文名稱: |
導電奈米碳及二氧化矽包覆片狀矽奈米顆粒之合成及其應用於鋰離子電池負極 Synthesis of Conductive Nano Carbon and Silicon Dioxide Covered Silicon Flakes for Application to Negative Electrode of Lithium Ion Battery |
指導教授: |
曾永華
Tzeng, Yon-Hua |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 鋰離子電池 、矽 、二氧化矽 、負極材料 、奈米碳管 |
外文關鍵詞: | Lithium ion battery, Silicon, Silicon dioxide, Anode, Carbon nanotube (CNT) |
相關次數: | 點閱:85 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今科技日新月異,對於能源的需求也越來越多,地球資源日漸短缺且近年來環保意識提高,更注重綠色能源、空氣汙染等議題,找出有效替代能源非常重要,考量有效率並可攜性問題,關注並研發鋰離子電池的人越來越多。對於鋰離子電池有許多要求,例如:低成本、高容量、高循環壽命、初始庫倫效率和循環後的庫倫效率要高,以及最重要的安全性,為了符合未來電動車趨勢並商業化的前提來提升效能,改良且研發鋰離子電池正負極材料非常重要。
本研究探討鋰離子電池並專注於負極(陽極)材料開發,現今商業化的鋰離子電池負極材料大部分使用石墨,雖然具有安全性且循環壽命長且充放電不會有枝晶鋰產生等優點,但石墨負極理論電容值只有372〖 mAh g〗^(-1),故尋找較高電容值的材料來取代石墨。矽負極材料擁有4200 〖mAh g〗^(-1)理論電容值,但是在充放電時過度的體積膨脹(400%)會造成粉碎,使得很難實現高初始庫倫效率和長循環壽命。因此本研究探討利用二氧化矽作為矽粉外包覆的負極材料,具有高理論電容值且充放電和原始矽粉相比不易粉碎等特性,利用高溫爐管式化學氣象沉積法加熱並藉由氬氣帶水氣進入石英管中進行氧化,用調變溫度來控制氧化速度,因為外部氧化層無法使鋰離子順利嵌入與脫嵌,故本文使用兩種方法使其二氧化矽斷裂,露出矽表面,在使用高溫爐管來完成碳包覆製程,使其二氧化矽外包覆奈米碳管(Carbon Nanotube, CNT),提升其導電度與當作體積變化的緩衝層。
This study explores the use of silicon powder via wet oxidation and coated with silicon dioxide, it has high theoretical capacity and is not easily pulverized compared with the original silicon powder. We use furnace heating silicon powder and inserting argon with H2O to oxidation. We can modulate temperature to control the oxidation rate. Because of lithium ions cannot insert the outside of oxide layer smoothly. In this paper, three methods are used to break the silicon dioxide in order to expose the silicon surface. The furnace tube is used to complete the carbon coating process, and the Si@SiO2 is coated with a carbon nanotube (CNT) to enhance its conductivity and be a buffer layer as a volume change. The Silicon@SiO2 after milling battery can maintain at 1000 mAhg^(-1).The Silicon@SiO2@CNT battery can maintain at 1200 mAhg^(-1), Another Si@SiO2 powder after ball milling and after 10 min oxidation, the battery can maintain 2000 mAhg^(-1) for 30 cycles.
[1] "https://www.variantmarketresearch.com/report-categories/semiconductor-electronics/lithium-ion-battery-market."
[2] "https://pubs.rsc.org/en/content/articlepdf/2015/cp/c4cp05552g."
[3] J. Arteaga, H. Zareipour, and V. J. C. S. R. E. R. Thangadurai, "Overview of Lithium-Ion Grid-Scale Energy Storage Systems," Current Sustainable/Renewable Energy Reports, vol. 4, no. 4, pp. 197-208, 2017.
[4] "http://debuglies.com/2017/11/08/researchers-failure-lithium-ion-batteries-dendrites/."
[5] P. Arora, R. E. White, and M. J. J. o. t. E. S. Doyle, "Capacity fade mechanisms and side reactions in lithium‐ion batteries," Journal of the Electrochemical Society, vol. 145, no. 10, pp. 3647-3667, 1998.
[6] "http://www.batthr.com/news/hangye/181844.html."
[7] M. M. Alam et al., "Synthesis of hollow silica nanosphere with high accessible surface area and their hybridization with carbon matrix for drastic enhancement of electrochemical property," Applied Surface Science, vol. 314, pp. 552-557, 2014.
[8] Y. Ren, H. Wei, X. Huang, and J. J. I. J. E. S. Ding, "A facile synthesis of SiO2@ C@ graphene composites as anode material for lithium ion batteries," Int J Electrochem Sci, vol. 9, pp. 7784-7794, 2014.
[9] D. Qiu, G. Bu, B. Zhao, and Z. J. J. o. S. S. E. Lin, "Mesoporous silicon microspheres fabricated via in situ magnesiothermic reduction of silicon oxide as a high-performance anode material for lithium–ion batteries," Journal of Solid State Electrochemistry, vol. 19, no. 3, pp. 935-939, 2015.
[10] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Xie, and O. J. S. S. I. Yamamoto, "SiOx-based anodes for secondary lithium batteries," Solid State Ionics, vol. 152, pp. 125-129, 2002.
[11] A. Netz and R. A. J. S. S. I. Huggins, "Amorphous silicon formed in situ as negative electrode reactant in lithium cells," Solid State Ionics, vol. 175, no. 1-4, pp. 215-219, 2004.
[12] Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, and Y. J. S. S. I. Takeda, "Morphology-stable silicon-based composite for Li-intercalation," Solid State Ionics, vol. 168, no. 1-2, pp. 61-68, 2004.
[13] A. Netz, R. A. Huggins, and W. J. J. o. P. S. Weppner, "The formation and properties of amorphous silicon as negative electrode reactant in lithium systems," Journal of Power Sources, vol. 119, pp. 95-100, 2003.
[14] J. K. Lee, W. Y. Yoon, and B. K. J. J. o. T. E. S. Kim, "Kinetics of reaction products of silicon monoxide with controlled amount of Li-ion insertion at various current densities for Li-ion batteries," Journal of The Electrochemical Society, vol. 161, no. 6, pp. A927-A933, 2014.
[15] M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, and M. J. J. o. t. e. s. Shirakata, "Analysis of SiO anodes for lithium-ion batteries," Journal of The Electrochemical Society, vol. 152, no. 10, pp. A2089-A2091, 2005.
[16] X. Feng, J. Yang, X. Yu, J. Wang, and Y. J. J. o. S. S. E. Nuli, "Low-cost SiO-based anode using green binders for lithium ion batteries," Journal of Solid State Electrochemistry, vol. 17, no. 9, pp. 2461-2469, 2013.
[17] S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. J. T. J. o. P. C. C. Konno, "Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries," The Journal of Phys. Chem. C, vol. 115, no. 27, pp. 13487-13495, 2011.
[18] C. C. Nguyen, H. Choi, and S.-W. J. J. o. T. E. S. Song, "Roles of oxygen and interfacial stabilization in enhancing the cycling ability of silicon oxide anodes for rechargeable lithium batteries," Journal of The Electrochemical Society, vol. 160, no. 6, pp. A906-A914, 2013.
[19] Y. Hwa, C.-M. Park, and H.-J. J. J. o. P. S. Sohn, "Modified SiO as a high performance anode for Li-ion batteries," vol. 222, pp. 129-134, 2013.
[20] B.-C. Yu, Y. Hwa, J.-H. Kim, and H.-J. J. E. A. Sohn, "A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites," Electrochimica Acta, vol. 117, pp. 426-430, 2014.
[21] M. K. Kim, B. Y. Jang, J. S. Lee, J. S. Kim, and S. J. J. o. P. S. Nahm, "Microstructures and electrochemical performances of nano-sized SiOx (1.18≤ x≤ 1.83) as an anode material for a lithium (Li)-ion battery," Journal of Power Sources, vol. 244, pp. 115-121, 2013.
[22] J. Tu et al., "Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance," vol. 118, no. 14, pp. 7357-7362, 2014.
[23] C. Liang et al., "Submicron silica as high− capacity lithium storage material with superior cycling performance," vol. 96, pp. 347-353, 2017.
[24] W. An et al., "Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes," vol. 345, pp. 227-236, 2017.
[25] C. Tang et al., "Ultrafine Nickel‐Nanoparticle‐Enabled SiO2 Hierarchical Hollow Spheres for High‐Performance Lithium Storage," vol. 28, no. 3, p. 1704561, 2018.
[26] C.-Y. Chou and G. S. J. C. o. M. Hwang, "Lithiation behavior of silicon-rich oxide (SiO1/3): a first-principles study," vol. 25, no. 17, pp. 3435-3440, 2013.
[27] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Xie, and O. J. S. S. I. Yamamoto, "SiOx-based anodes for secondary lithium batteries," vol. 152, pp. 125-129, 2002.
[28] C. Yang et al., "Hollow Si/SiO x nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage," J. Mater. Chem. A, vol. 6, no. 17, pp. 8039-8046, 2018.
[29] S.-S. Suh et al., "Electrochemical behavior of SiOx anodes with variation of oxygen ratio for Li-ion batteries," Electrochimica Acta, vol. 148, pp. 111-117, 2014.
[30] H. Takezawa, K. Iwamoto, S. Ito, and H. J. J. o. P. S. Yoshizawa, "Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries," Journal of Power Sources, vol. 244, pp. 149-157, 2013.
[31] M. Al-Maghrabi, J. Suzuki, R. Sanderson, V. Chevrier, R. Dunlap, and J. J. J. o. T. E. S. Dahn, "Combinatorial studies of Si1− xOx as a potential negative electrode material for Li-Ion battery applications," Journal of The Electrochemical Society, vol. 160, no. 9, pp. A1587-A1593, 2013.
[32] L. Zhang et al., "Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries," Advanced Functional Materials, vol. 26, no. 26, pp. 4527-4532, 2014.
[33] M. Li et al., "Fabrication and lithium storage performance of sugar apple-shaped SiOx@ C nanocomposite spheres," Journal of Power Sources, vol. 288, pp. 53-61, 2015.
[34] M. Li, Y. Yu, J. Li, B. Chen, A. Konarov, and P. J. J. o. P. S. Chen, "Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithium-ion batteries," vol. 293, pp. 976-982, 2015.
[35] M. Li, Y. Yu, J. Li, B. Chen, A. Konarov, and P. J. J. o. P. S. Chen, "Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithium-ion batteries," Journal of Power Sources, vol. 293, pp. 976-982, 2015.
[36] Z. Liu et al., "Yolk@ Shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage," Energy Storage, 2018.
[37] Q. Xu, J. K. Sun, Y. X. Yin, and Y. G. J. A. F. M. Guo, "Facile Synthesis of Blocky SiOx/C with Graphite‐Like Structure for High‐Performance Lithium‐Ion Battery Anodes," Advanced Functional Materials, vol. 28, no. 8, p. 1705235, 2018.
[38] W. He, Y. Liang, H. Tian, S. Zhang, Z. Meng, and W.-Q. J. E. S. M. Han, "A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries," vol. 8, pp. 119-126, 2017.
[39] K. Song, S. Yoo, K. Kang, H. Heo, Y.-M. Kang, and M.-H. J. J. o. P. S. Jo, "Hierarchical SiOx nanoconifers for Li-ion battery anodes with structural stability and kinetic enhancement," Journal of Power Sources, vol. 229, pp. 229-233, 2013.
[40] W. He, Y. Liang, H. Tian, S. Zhang, Z. Meng, and W.-Q. J. E. S. M. Han, "A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries," Energy Storage, vol. 8, pp. 119-126, 2017.
[41] A. Wilson, J. Reimers, E. Fuller, and J. J. S. S. I. Dahn, "Lithium insertion in pyrolyzed siloxane polymers," Solid State Ionics, vol. 74, no. 3-4, pp. 249-254, 1994.
[42] L. David, R. Bhandavat, U. Barrera, and G. J. N. c. Singh, "Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries," Nature communications, vol. 7, p. 10998, 2016.
[43] J. Kaspar et al., "Stable SiOC/Sn nanocomposite anodes for lithium‐ion batteries with outstanding cycling stability," Advanced Functional Materials, vol. 24, no. 26, pp. 4097-4104, 2014.
[44] J. Song, Y. Wang, and C. C. J. J. o. p. s. Wan, "Review of gel-type polymer electrolytes for lithium-ion batteries," Journal of power sources, vol. 77, no. 2, pp. 183-197, 1999.
[45] A. Magasinski et al., "Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid," ACS applied materials &, vol. 2, no. 11, pp. 3004-3010, 2010.
[46] C. C. Nguyen, T. Yoon, D. M. Seo, P. Guduru, B. L. J. A. a. m. Lucht, and interfaces, "Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation," ACS applied materials, vol. 8, no. 19, pp. 12211-12220, 2016.
[47] T. M. Higgins et al., "A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes," Acs Nano, vol. 10, no. 3, pp. 3702-3713, 2016.
[48] H. Zhao, A. Du, M. Ling, V. Battaglia, and G. J. E. A. Liu, "Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application," Electrochimica Acta, vol. 209, pp. 159-162, 2016.
[49] Y. K. Jeong, T.-w. Kwon, I. Lee, T.-S. Kim, A. Coskun, and J. W. J. N. l. Choi, "Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries," Nano Lett, vol. 14, no. 2, pp. 864-870, 2014.
[50] I. Kovalenko et al., "A major constituent of brown algae for use in high-capacity Li-ion batteries," Science, vol. 334, no. 6052, pp. 75-79, 2011.
[51] "https://kknews.cc/science/pgzn56z.html."