| 研究生: |
呂勉吾 Lu, Mian-Wu |
|---|---|
| 論文名稱: |
火害後水中冷卻圓弧切削減弱式梁柱彎矩接頭耐震行為之研究 The Post-Fire Seismic Behavior of the Water-Cooled Radius-Cut RBS Beam-to-Column Moment Connection |
| 指導教授: |
鍾興陽
Chung, Hsin-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 279 |
| 中文關鍵詞: | 火害後 、水中冷卻 、減弱式梁柱接頭 、圓弧切削 、反覆載重試驗 、耐震性能 |
| 外文關鍵詞: | Post-Fire, Water-Cooling, RBS Beam-to-Column Connection, Radius-Cut, Cyclic Loading Test, Seismic Resistant Performance |
| 相關次數: | 點閱:165 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為瞭解國內鋼構建築中常見之減弱式梁柱彎矩接頭在受到高溫火害並以消防水柱澆灌冷卻之後,其能否提供如未受火害前之耐震性能。本研究團隊製作兩組相同之實尺寸梁柱彎矩接頭試體,並於托梁之翼板處進行減弱式圓弧切削,RBS-R2代表未受火害之圓弧切削試體,是為對照組;RBS-W9代表以升溫至900˚C後水冷之之圓弧切削試體,用模擬火害後以消防水柱澆灌冷卻之情形,是為實驗組,兩試體進行相同的梁柱接頭反覆載重試驗。試驗結果顯示: RBS-R2試體可以通過AISC耐震規範(2010)之規定,於層間位移角5%時柱面彎矩下降破壞,RBS-W9試體在層間位移角3.23%時發生未預期的南翼板續接處銲道之斷裂破壞,但是透過各項量測結果的檢視與分析計算後,本論文合理推測RBS-W9試體將在層間位移角4%以前因柱面銲道斷裂而破壞,無法通過AISC耐震規範(2010)之規定,整體來說RBS-W9試體能提供較大的柱面彎矩,但延展性、韌性與耐震性能皆較RBS-R2試體為差。本論文亦將RBS-W9試體之反覆載重試驗結果與受到相同溫度處理但梁柱接頭形式不同的STD-W9試體相比較,結果顯示:兩組試體皆未能通過AISC耐震規範(2010)之規定,於相同層間位移角下RBS-W9試體之延展性、韌性、塑性變形能力皆較STD-W9試體差,但RBS-W9試體在梁翼板圓弧切削之作用下,試體翼板之應變較STD-W9試體來得小,銲道破壞時機亦較STD-W9試體晚,試體可承受之層間位移角較STD-W9試體為大,整體來說RBS-W9試體之延展性、韌性、耐震性皆較STD-W9試體為佳。
In order to understand whether the commonly-used radius-cut RBS beam-to-column connections in domestic steel buildings after high-temperature fire and water-cooled by fire hosing could provide the same pre-fire seismic-resistant performance, our research team fabricated two full-scale beam-to-column moment connection specimens with the same dimensions and made the radius-cut RBS profile on the stub-beam flanges. The RBS-R2 specimen, which represented the specimen without any fire exposure was the control group. The RBS-W9 specimen, which represented the specimen heated to 900°C and then water-cooled to room temperature in order to simulate the scenario of fire hosing the beam-to-column connections of a steel structure building on fire, is the experimental group. The two specimens were tested by the same beam-to-column cyclic loading procedure. The test results showed that the RBS-R2 specimen conformed to the requirements of 2010 AISC seismic provisions and failed at the 5% inter-story drift angle due to the column face moment strength decreasing. For the RBS-W9 specimen, an unexpected fracture occurred at the continuing groove weld joint of the south beam flange the 3.23% inter-story drift angle. Through the detailed investigation and analysis for the test results, this thesis reasonably inferred that the RBS-W9 specimen would failure before the 4% inter-story drift angle due to the weld pass fracture in the column face. As a result, it could not meet the requirements of 2010 AISC seismic provisions. In general, the RBS-W9 specimen could provide the larger column-face flexural strength, but poorer ductility, toughness and seismic-resistant performance than those of the RBS-R2 specimen. Besides, this thesis also compared the test results of RBS-W9 specimen with that of STD-W9 specimen. The comparison results showed that two specimens both could not meet the requirements of 2010 AISC seismic provisions. At the same inter-story drift angle, the RBS-W9 specimen had the poorer ductility, toughness and plastic deformation ability than those of the STD-W9 specimen. However, due to the effect of the radius-cut profile on the beam flanges of the RBS-W9 specimen, the strains on the beam flanges were smaller than those of the STD-W9 specimen. The weld pass fracture timing of the RBS-W9 specimen was also later than that of the STD-W9 specimen, and the RBS-W9 specimen could sustain a larger inter-story drift angle than that of the STD-W9 specimen. In general, the ductility, toughness and seismic-resistant performance of the RBS-W9 specimen were better than those of the STD-W9 specimen.
AISC, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illonois, (2010)
Chen, S. J. and Yeh, C. H. Enhancement of ductility of steel beam-to-column connections for seismic resistance. SSRC Tecdnical Session. Lehigh University, Pensylvania, (1994).
Chen, S. J., Yeh, C. H. and Chu, J. M., “Ductile steel beam-to-column connections for seismic resistance,” ASCE Structural Journal. Vol. 122(11), pp. 1292–1299, (1996).
Engelhardt, M. D., Winneberger, T., Zekany, A. J. and Potyraj, T. J. 1996. “The Dogbone Connection, Part II,” Modern Steel Construction. Vol. 36(8), pp. 46-55, (1996).
FEMA (2000a), “Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings,” Report No. FEMA-350, SAC Joint Venture, Washington, DC.
Ichinohe, Y. and Kuwamura, H., “Effects of Deflection Amplitude on Brittle Fracture of Steel Members. — Research of Steel Fracture Part 3,” Journal of Structural and Construction Engineering, Architectural Institute of Japan, Vol. 534, pp. 145-151, (2000).
Ivankiw, R. N. and Carter, C. J., “The Dogbone: A NewIdea to Chow On,” Modorn Steel Construction. Vol. 36(4), pp. 18-23, (1996).
Kuwamura, H. and Takagi, N., “Similitude Law of Prefracture Hysteresis of Steel Members,” Journal of Structural Engineering, Vol. 130(5), pp. 752-761, (2004).
Lu, L. W., Ricles, J. M., Mao, C. and Fisher, J. W., “Critical Issues in Achieving Ductile Behavior of Welded Moment Connections, ”Journal of Constructional Steel Research,” Vol. 55, Issue 1-3, pp. 325-341, (2000).
Okazaki, T., “Seismic Performance of Link-to-Column Connections in Steel Eccentrically Braced Frames,” PHD Dissertation, The University of Texas at Austin, (2004).
Plunder, A., “New Idea for Safe Structures in Seismic Zones,” Proc, Symposium of Mixed Structures Including New Materials, pp. 431–436, IABSE, Brussels, Belgium, 1990.
Qiang, X., Bijlaard, F. S. and Kolstein, H., “Post-fire Mechanical Properties of High Strength Structural Steels S460 and S690,” Journal of Constructional Steel Research, Vol. 35, pp. 1-10, (2012).
Qiang, X., Bijlaard, F. S. and Kolstein, H., “Post-fire Performance of Very High Strength Steel S960,” Journal of Constructional Steel Research, Vol. 80, pp. 235-242, (2013).
方柏淳,「火害後耐火鋼與普通鋼梁柱銲接接頭十字試體反覆載重實驗之研究」,碩士論文,國立成功大學土木工程系,台南(2014)。
王士銘,「火害後梁柱接頭銲接區拉力實驗之研究」,碩士論文,國立成功大學土木工程系,台南(2011)。
李智民,「H型鋼柱接擴翼鋼梁抗彎接頭之耐震行為與設計」,碩士論文,國立交通大學土木工程系,新竹(2006)。
周民瑜,「常見結構用鋼材火害後機械性質之研究」,碩士論文,國立成功大學土木工程系,台南(2008)。
林潔祥,「擴翼式鋼骨托梁抗彎接頭之耐震行為」,碩士論文,國立交通大學土木工程系,新竹(2005)。
張嘉元,「火害後空氣冷卻H型梁-箱型柱彎矩接頭耐震行為之研究」,碩士論文,國立成功大學土木工程系,台南(2015)。
陳宥豪,「火害後水中冷卻H型梁-箱型柱彎矩接頭耐震行為之研究」,碩士論文,國立成功大學土木工程系,台南(2015)。
陳紀勛,「鋼柱與鋼梁腹板開孔位處塑性區梁柱接頭之耐震行為」,碩士論文,國立交通大學土木工程系,新竹(2008)。
蔡元凱,「火害後耐火鋼與普通鋼梁柱銲接接頭十字試體快速拉伸實驗之研究」,碩士論文,國立成功大學土木工程系,台南(2014) 。
蔡岳勳,「實尺寸鋼結構梁柱彎矩接頭試驗與分析」,碩士論文,國立交通大學土木工程系,新竹(2010)。
羅盛威,「翼型鋼柱與鋼梁加勁式接頭耐震行為」,碩士論文,國立交通大學土木工程系,新竹(2012)。
饒智凱,「鋼骨梁柱梁翼內側加勁補強接頭之耐震行為研究」,碩士論文,國立交通大學土木工程系,新竹(2007)。
校內:2021-09-01公開