| 研究生: |
郭朝傑 Guo, Chao-Jie |
|---|---|
| 論文名稱: |
含液晶缺陷之可調式光子晶體分波器 Tunable Photonic Crystal Wavelength Division Multiplexer with Liquid Crystal Defects |
| 指導教授: |
陳聯文
Chen, Lian-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 分波器 、光子晶體 |
| 外文關鍵詞: | photonic |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光子晶體結構是由材料折射率或介電常數以週期性排列而組成的結構,這樣的結構會產生光子晶體能隙,能完全阻擋光波的通過。本文利用平面波展開法作為分析光子晶體能隙的工具,並利用時域有限差分法來分析光子晶體共振腔與分波器。
將原本完美的週期性光子晶體結構置入缺陷,由於局域化的現象產生共振腔,本文先針對點缺陷的共振腔做分析,將此共振腔加上波導設計成濾波器, 液晶置入此濾波器的缺陷中,應用液晶的可調變光電特性,設計出可調變的光子晶體分波器,並分析各種形狀缺陷下的品質因子與可調變的波長,來找出品質較佳分波器,以設計出更多通道的分波器。
Two dimensional photonic crystal slabs have formed photonic band gap that forbids wave propagation. With the defects in photonic crystals, the defect modes will be found at a resonance frequency within the photonic band gap. Photonic crystal waveguides and cavities are the two fundamental devices used to spatially localize the light in a planar photonic crystal. We design a channel filter of a two dimensional photonic crystal with triangular lattices.
We present a method for tuning a photonic crystal microcavity by rotating electromagnetically the director axis of the liquid crystal surrounding the microcavity. The index of the refraction can be actively modulated after infiltrating anisotropic liquid crystals into a two dimensional photonic crystal lattice of air cylinders in silicon.
By implementing the two dimensional finite difference time domain method, we demonstrate the ability to tune wavelengths of a photonic crystal filter by modulating the director axis of the liquid crystal. Multiple wavelengths can be selected. We analyze the quality factor and the resonance wavelength of a tunable channel filter to enhance the performance of the photonic crystal wavelength division multiplexer applications. The tunable cavities allow the wavelength division multiplexer to actively select many wavelengths from the waveguides.
[1] E. Yablonovitch “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Physical Review Letters Vol. 58, 2059-2062 (1987)
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters Vol. 58, 2486-2489 (1987)
[3] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals(Princeton U. Press, Princeton, N. J., 1995)
[4] K. Busch “Photonic band structrre theory : assessment and perspectives” Comptes Rendus Physique Vol.3 53-66(2002)
[5] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Communications Vol.89, 413-416 (1994)
[6] S. Y. Lin and J. G. Fleming, “A Threee-Dimensional Optical Photonic Crystal,” Journal of Lightwave Technology Vol.17, 1944-1947 (1999).
[7] S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, “Alignment and Stacking of Semiconductor Photonic Bandaps by Wafer-Fusion,” J. Lightwave Technology Vol.17 1948-1955 (1999)
[8] S. G. Johnson and J. D. Joannopoulos “Designing synthetic optical media : photonic crystals” Acta Materialia Vol.51 5823-5835(2003)
[9] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science Vol.282, 1476-1478 (1998)
[10] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters Vol.65, 3152-3155 (1990)
[11] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Physical Review Letters Vol.67, 2295-2298 (1991)
[12] M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimesional photonic band structures,” Optics Communications Vol.80, 199-204 (1991)
[13] M. Plihal, and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Physical Review B Vol.44, 8565–8571 (1991)
[14] P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Physical Communications Vol.85, 306-322 (1995)
[15] C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Physical Review B Vol.51, 16635–16642 (1995)
[16] X. Wang, X. G. Zhang, Q. Yu, B. N. Harmon, “Multiple-scattering theory for electromagnetic waves,” Physical Review B Vol.47, 4161–4167 (1993)
[17] P. R . Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency”
Physical Review B Vol. 54, No. 11 7837-7842(1996)
[18] M. Qiu” Numerical method for computing defect modes in two dimensional photonic crystals with dielectric or metallic inclusions” Physical Review B Vol. 61, No. 19(2000)
[19] J. Vucˇkovic´, M. Loncˇar, H. Mabuchi, and A. Scherer“Design of photonic crystal microcavities for cavity QED” Physical Review E, Vol.65,016608 (2001)
[20] H. G. Park,a J. K. Hwang, J. Huh, H. Y. Ryu, and Y. H. Lee,“Nondegenerate monopole-mode two-dimensional photonic band gap laser” Applied Physical Letters Vol. 79, No. 19, 3032-3034 (2001)
[21] T. Yoshie,a) J. Vucˇkovic´, and A. Scherer “High quality two-dimensional photonic crystal slab cavities”,Applied Physical Letters Vol. 79, No. 26, 4289-4291 (2001)
[22] T. Yoshie,a) J. Vucˇkovic´, and A. Scherer“High quality two-dimensional photonic crystal slab cavities” Applied Physical Letters Vol. 79, No. 26 , 4289-4291 (2001)
[23] Z. Zhang and M. Qiu “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs” Optics Express Vol. 12, No. 17, 3988-3995 (2004)
[24] H. Altug and J. Vučković” Photonic crystal nanocavity array laser” Optics Express Vol. 13, No. 22, 8819-8827 (2005)
[25] Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin“Micro displacement sensor based on line-defect resonant cavity in photonic crystal” Optics Express Vol. 14, No. 1, 298-305(2006)
[26] A. Sharkawy, S. Shi and D.W. Prather” Electro-optical switching using coupled photonic crystal waveguides” Optics Express Vol. 10, No.20 1048-1059 (2002)
[27] A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi” Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic crystal waveguide” Optics Express Vol. 13, No. 11 4202-4209(2005)
[28] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos”Channel Drop Tunneling through Localized States” Physical Review Letters 960-963 (1998)
[29] S. Fan, P. R. Villeneuve, J. D. Joannopoulos”Channel drop filters in photonic crystals”Optics Express Vol. 3, No. 1 ,4-11 (1998)
[30] M. Qiu and B. Jaskorzynska“Design of a channel drop filter in a two-dimensional triangular photonic crystal”, Applied Physical Letters Vol. 83, No. 6 , 1074-1076(2003)
[31] Z. Zhang and M. Qiu” Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs” Optics Express Vol. 13, No. 7, 2590-2604 (2005)
[32] A. Sharkawy, S. Shi, and D. W. Prather “Multichannel wavelength division multiplexing with photonic crystals” Applied Optics Vol. 40, No. 14 2247-2252 (2001)
[33] D. M. Pustai, A. Sharkawy, S. Shi, and D. W. Prather “Tunable photonic crystal microcavities” Applied Optics Vol. 41, No. 26 5574-5578(2002)
[34] C. Y. Liu and L. W. Chen “Tunable photonic-crystal waveguide Mach–Zehnder interferometer achieved by nematic liquid-crystal phase modulation” Optics Express Vol. 12, No. 12 , 2616-2624 (2004)
[35] C. Y. Liu and L. W. Chen” Tunable band gap in a photonic crystal modulated by a nematic liquid crystal” Physical Review B 72 045133 (2005)
[36] H. Takeda and K. Yoshino “Tunable light propagation in Y-shapedwaveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects” Physical Review B 67 73106 (2003)