簡易檢索 / 詳目顯示

研究生: 廖家樑
Liao, Chia-Liang
論文名稱: 抗菌型鈣基骨泥之微結構及性質研究(I)
Investigation of microstructure and properties of antibacterial calcium-based bone cement (I)
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 63
中文關鍵詞: 鈣基骨泥抗菌
外文關鍵詞: Calcium-based bone cement, antibacteriale
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了降低骨科、牙科手術術後感染的風險,本實驗進行抗菌型骨泥的探討,選擇A粉末當抗菌劑加入具有良好生物相容性與骨誘導性的鈣基骨泥複合材中。
    本實驗選擇將A粉末化合物添加入鈣基骨泥複合材中,進行對抗菌型骨泥的崩解性質、工作時間、硬化時間及抗壓強度的討論,選擇合適臨床使用的之抗菌型鈣基骨泥條件來進行基本性質的討論。
    實驗結果表明,添加越高比例的E粉末進入抗菌型鈣基骨泥,可改善崩解性;調整骨泥使用的液粉比,可以改善崩解性、工作時間與硬化時間;調整硬化劑H粉末水溶液的濃度,亦可明顯改善抗菌型鈣基骨泥之崩解性、工作時間、硬化時間與抗壓強度;改變F粉末粒徑大小,也可以縮短工作時間與硬化時間。
    抗菌型鈣基骨泥,研究後發現在混和硬化劑並充分攪拌1分鐘後,即使靜置也不會影響其抗壓性質表現,基底為高生物相容性的鈣基骨泥複合材,於臨床使用上有很大的潛力。

    Calcium-based bone cement is widely used in dental and orthopedic applications because its good biocompatibility and osteoinduction. The CMRT Lab developed calcium-based bone cement which has high early strength and non-disperse property unlike conventional CPCs. In order to reduce the risk of postoperative infection in orthopedic and dental surgery, we add antibacterial agent into the Calcium-based bone cement and we adjust the component ratio and the particle size of antibacterial calcium-based bone cement to find better property for medical use.

    誌謝 I 中文摘要 II 總目錄 V 表目錄 IX 圖目錄 XI 第一章 總序論 1 前言1 1.1. 生醫材料 2 1.1.1. 生醫陶瓷 2 1.2.2  生醫惰性陶瓷 3 1.2.3  生物活性陶瓷 3 1.2.4  生物可蛻化或生物可吸收材料 4 1.3. 骨取代材 4 1.3.1. 生醫陶瓷之骨取代材 4 1.4. 植入手術感染及抗菌型植入材的發展 5 1.4.1. 簡介 5 1.4.2. 生物膜(biofilm) 6 1.4.3. 感染後的治療 9 1.4.4. 抗菌型植入材 12 第二章 實驗原理及步驟 14 2.1. 實驗流程 14 2.1.1. 抗菌型鈣基骨泥基底材料 15 2.1.2. 添加劑 15 2.1.3. 硬化劑、浸泡溶液與緩衝溶液 16 2.1.4. 本實驗所使用的藥品名稱、來源及規格 16 2.2. 實驗步驟與分析方法 17 2.2.1. 崩解性質的測試 17 2.2.2. 工作與硬化時間測量 18 2.2.3. Pressureless試片製作與抗壓強度測試 19 第三章 結果與討論(一) 調整E粉末比例來調整抗菌骨泥崩解性質之結果與討論 21 3.1. 崩解性測試 21 3.1.1. 添加E粉末對崩解性的影響 21 3.1.2. 液粉比對崩解性的影響 22 3.1.3. 硬化劑濃度對崩解性的影響 25 第四章 結論(一) 28 第五章 結果與討論(二) 改變硬化劑濃度與粉液比對抗菌骨泥的硬化時間與抗壓強度影響 29 5.1. 硬化時間 29 5.1.1. 液粉比以及硬化劑濃度對硬化時間的影響 29 5.2. 抗壓強度 32 5.2.1. 抗壓試片製作方法 32 5.2.2. 硬化劑濃度對抗壓強度的影響 37 5.2.3. 粉液均勻混合後靜置時間對抗壓強度的影響 39 第六章 結論(二) 41 第七章 結果與討論(三) 改變抗菌型鈣基骨泥中的F粉末粒徑大小,對抗菌型鈣基骨泥的性質影響 43 7.1. 崩解性分析 43 7.2. 硬化時間 44 7.3. 抗壓強度分析 45 7.4. 粉液均勻混合後靜置時間對抗壓強度的影響 46 第八章 結論(三) 48 第九章 參考文獻 49 第十章 附錄 58 10.1 抗菌型鈣基骨泥浸泡SBF之pH值變化 58 10.2 抗菌型鈣基骨泥抗壓強度的變化 60 10.3 細胞毒性結果 62

    1 F. H. Lin, M.H. Hon, and H.C., Liu, M. H. Hon and H. C., Liu, (1992) ‘Preparation and cell culture test of sintered B-TCP phosphate ceramic’, Chem. Eng., Resear. Bullet, 5:7:81-88 (SCI)., .
    2 Arciola, C.R., Campoccia, D., Speziale, P., Montanaro, L. and Costerton, J.W. (2012) ‘Biofilm formation in staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials’, Biomaterials, 33(26), pp. 5967–5982. doi: 10.1016/j.biomaterials.2012.05.031.
    3 Bohner, M. and Baumgart, F. (2004) ‘Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes’, Biomaterials, 25(17), pp. 3569–3582. doi: 10.1016/j.biomaterials.2003.10.032.
    4 Bohner, M., Galea, L. and Doebelin, N. (2012) ‘Calcium phosphate bone graft substitutes: Failures and hopes’, Journal of the European Ceramic Society, 32(11), pp. 2663–2671. doi: 10.1016/j.jeurceramsoc.2012.02.028.
    5 Brown WE, Chow LC., A new calcium phosphate setting cement. J Dent Res Abs 1983;207:62-672.
    6 Brown WE, Chow LC., Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
    7 Brown WE, Chow LC., Dental resptorative cement pastes. US. Patent 1985, No. 4518430.
    8 Brown WE, Chow LC., Singular points in the chemistry of teeth. J Dent. Res 1975;54:74.
    9 Chow LC., Calcium phosphate materials: reactor response ; Adv Dent Res 2(1):181-184, August, 1988
    10 Chow LC, Takagi S., Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
    11 Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
    12 Chow L C, J. Ceram. Soc. Japan Int. Edn. 99 (1992) 927.
    13 Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J. Author manuscript; available in PMC 2009 August 5.
    14 Dai, H., Li, S., Yan, Y., Cao, X., Lu, X. and Leng, Y. (2004) ‘Ultrastructural analysis on the osteogenesis and transformation of calcium phosphate ceramics in vivo’, Journal of materials science & technology, 20(1), pp. 59–62.
    15 Groot, D. (1988) ‘Effect of porosity and physicochemical properties on the stability, resorption, and strength of calcium phosphate ceramics’, Annals of the New York Academy of Sciences., 523, pp. 227–33.
    16 Hench, L.L. (1991) ‘Bioceramics: From concept to clinic’, Journal of the American Ceramic Society, 74(7), pp. 1487–1510. doi: 10.1111/j.1151-2916.1991.tb07132.x.
    17 Hench, L.L. and Wilson, J. (eds.) (1993) An introduction to Bioceramics. Singapore: World Scientific Publishing Co Pte.
    18 Hu, G., Xiao, L., Fu, H., Bi, D., H and Tong, P. (2009) ‘Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair’, Journal of materials science. Materials in medicine., 21(2), pp. 627–34.
    19 Hulbert, S.F., Hench, L.L., Forbers, D. and Bowman, L.S. (1982) ‘History of bioceramics’, Ceramics International, 8(4), pp. 131–140. doi: 10.1016/0272-8842(82)90003-7.
    20 Ishikawa, K. (2010a) ‘Bone substitute fabrication based on Dissolution-Precipitation reactions’, Materials, 3(2), pp. 1138–1155. doi: 10.3390/ma3021138.
    21 Jhajharia, K., Mehta, L., Parolia, A. and Shetty, Kv. (2015) ‘Biofilm in endodontics: A review’, Journal of International Society of Preventive and Community Dentistry, 5(1), p. 1. doi: 10.4103/2231-0762.151956.
    22 Klein, C.P.A.T., Driessen, A.A., de Groot, K. and van den Hooff, A. (1983a) ‘Biodegradation behavior of various calcium phosphate materials in bone tissue’, Journal of Biomedical Materials Research, 17(5), pp. 769–784. doi: 10.1002/jbm.820170505.
    23 Klein, C.P.A.T., Driessen, A.A., de Groot, K. and van den Hooff, A. (1983b) ‘Biodegradation behavior of various calcium phosphate materials in bone tissue’, Journal of Biomedical Materials Research, 17(5), pp. 769–784. doi: 10.1002/jbm.820170505.
    24 Kousa, A., Mattila, S. and Nikkarinen, M. (2013) High tech-metals in the environment and health lithium and cobalt. Available at: http://tupa.gtk.fi/raportti/arkisto/53_2013.pdf (Accessed: 22 June 2016).
    25 L, F. and K, de G. (1983) ‘Medical use of calcium phosphate ceramics.’, In Bioceramics of Calcium Phosphate, .
    26 LeGeros, R.Z. (1993) ‘Biodegradation and bioresorption of calcium phosphate ceramics’, Clinical Materials, 14(1), pp. 65–88. doi: 10.1016/0267-6605(93)90049-D.
    27 Lieb, J. (2004) ‘The immunostimulating and antimicrobial properties of lithium and antidepressants’, The Journal of infection., 49(2), pp. 88–93.
    28 Lu, J., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaitre, J. and Proust, J. (2002) ‘The biodegradation mechanism of calcium phosphate biomaterials in bone’, Journal of biomedical materials research., 63(4), pp. 408–12.
    29 Lu, J., Gallur, A., Flautre, B., Anselme, K., Descamps, M., Thierry, B. and Hardouin, P. (1998) ‘Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits’, Journal of biomedical materials research., 42(3), pp. 357–67.
    30 Mah, T.-F.C. and O’Toole, G.A. (2001) ‘Mechanisms of biofilm resistance to antimicrobial agents’, Trends in Microbiology, 9(1), pp. 34–39. doi: 10.1016/s0966-842x(00)01913-2.
    31 Mah, T. and O’Toole, G. (2001) ‘Mechanisms of biofilm resistance to antimicrobial agents’, Trends in microbiology., 9(1), pp. 34–9.
    32 Malard, O., Bouler, J., Guicheux, J., Heymann, D., Pilet, P., Coquard, C. and Daculsi, G. (1999) ‘Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: Preliminary in vitro and in vivo study’, Journal of biomedical materials research., 46(1), pp. 103–11.
    33 Mehrvarzfar, P., Akhavan, H., Rastgarian, H., Akhlagi, N.M., Soleymanpour, R. and Ahmadi, A. (2011) ‘An in vitro comparative study on the Antimicrobial effects of Bioglass 45S5 vs. Calcium Hydroxide on Enterococcus Faecalis’, 6(1).
    34 Meng, Y., Xu, D. and Bao, Y. (2009) ‘Preparation and properties of calcium phosphate cement containing ZnO Whisker’, Materials Science Forum, 610-613, pp. 1044–1048. doi: 10.4028/www.scientific.net/MSF.610-613.1044.
    35 Newe, C., Cunningham, E., Buchanan, F., Walker, G., Prendergast, P., Lennon, A. and Dunne, N.J. (2012) ‘Static and dynamic degradation of Sintered calcium phosphate ceramics’, Key Engineering Materials, 493-494, pp. 861–865. doi: 10.4028/www.scientific.net/KEM.493-494.861.
    36 Ooms, E., Wolke, J., der, van and Jansen, J. (2002) ‘Trabecular bone response to injectable calcium phosphate (ca-p) cement’, Journal of biomedical materials research., 61(1), pp. 9–18.
    37 O’Toole, G., Kaplan, H.B. and Kolter, R. (2000) ‘Biofilm formation as microbial development’, Annual Review of Microbiology, 54(1), pp. 49–79. doi: 10.1146/annurev.micro.54.1.49.
    38 Pu, S., Lian, H., Hua, Y., Ying, X., Zheng and Xin, Q. (2005) ‘Effect of Macrophage on degradation of β-tCP ceramics’, Key Engineering Materials, 288-289, pp. 549–552. doi: 10.4028/www.scientific.net/KEM.288-289.549.
    39 Radovanović, D.Đ., Kamberović, Ž.J., Korać, M.S. and Rogan, J.R. (2015) ‘Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process’, Journal of Environmental Science and Health, Part A, 51(1), pp. 34–43. doi: 10.1080/10934529.2015.1079104.
    40 Schaefer, S., Detsch, R., Uhl, F., Deisinger, U. and Ziegler, G. (2011) ‘How degradation of calcium phosphate bone substitute materials is influenced by phase composition and porosity’, Advanced Engineering Materials, 13(4), pp. 342–350. doi: 10.1002/adem.201000267.
    41 Thomas, M. and Puleo, D. (2008) ‘Calcium sulfate: Properties and clinical applications’, Journal of biomedical materials research. Part B, Applied biomaterials., 88(2), pp. 597–610.
    42 Thomas, M.V. and Puleo, D.A. (2009) ‘Calcium sulfate: Properties and clinical applications’, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88B(2), pp. 597–610. doi: 10.1002/jbm.b.31269.
    43 VALLETREGI, M. (2004) ‘Calcium phosphates as substitution of bone tissues’, Progress in Solid State Chemistry, 32(1-2), pp. 1–31. doi: 10.1016/j.progsolidstchem.2004.07.001.
    44 Wenke, J., Owens, B., Svoboda, S. and Brooks, D. (2006) ‘Effectiveness of commercially-available antibiotic-impregnated implants’, The Journal of bone and joint surgery. British volume., 88(8), pp. 1102–4.
    45 Wu, Higuchi, W., Fox, J. and Friedman, M. (1976) ‘Kinetics and mechanism of hydroxyapatite crystal dissolution in weak acid buffers using the rotating disk method’, Journal of dental research., 55(3), pp. 496–505.
    46 Zheng, Q., Du, J., Xia, Z., Zeng, H., Li, S., Yan, Y. and Chen, F. (2000) ‘Biodegradation of tricalcium phosphate ceramics by osteoclasts’, Journal of Tongji Medical University = Tong ji yi ke da xue xue bao., 18(4), pp. 257–61.
    47 李玉寶 (2003) 生物醫學材料. 北京, 化學工業出版社.
    48 ELIZE, N. (2012) Degradation of implant materials. United States: Springer.
    49 上海微創骨科醫療科技有限公司, 蘇州海歐斯醫療器械有限公司” 一种骨内固定植入物及其制备方法”中國專利 2015, CN 201310751790
    50 Yen-Hsiang Tseng. “Investigation of properties of antibacterial calcium phosphate granular bone graft (II). ”,National Cheng-Kung University Library. 2014
    51 Jheng-Hong Chen “Investigation of properties of antibacterial calcium-based cement ”,National Cheng-Kung University Library. 2013
    52 Yu-Chang Lai. “Investigation of properties of multi-phase calcium sulfate bone substitute. ”, National Cheng-Kung University Library. 2014
    53 Hao-Wei Wang “Characterization of antibacterial calcium-based bone cement. ”, National Cheng-Kung University Library. 2014
    54 Pi-Hung Ceng “Characterization of antibacterial calcium-based bone substitute ”, National Cheng-Kung University Library. 2015

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE