| 研究生: |
劉孟璋 Liu, Meng-Chang |
|---|---|
| 論文名稱: |
以原子力顯微鏡量測生命材料機械性質之研究-活體細胞的驗證實例 The Study of AFM-Based Techniques to Measure Mechanical Properties of Biological Materials - An Example with Living Cells |
| 指導教授: |
田思齊
Tien, Szu-Chi 林宙晴 Lin, Chou-Ching 朱銘祥 Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | PC-12類神經細胞 、半接觸式原子力顯微鏡 、楊氏係數 、聚苯乙烯 、表面能 、相位差 |
| 外文關鍵詞: | Young's modulus, Surface energy, Phase, Polystyrene, PC-12 neuron-like cell, Tapping mode |
| 相關次數: | 點閱:128 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在原子力顯微鏡的應用上,半接觸式比起其他操作模式有更好的解析度,而微小的作用力也降低對樣本表面破壞的可能性。本研究以半接觸式不容易傷害樣本、造成樣本變形的優點下,發展半接觸式量測樣本的機械性質之方法,經由單次掃描所獲得的相位差資訊與力學模型需要的表面能參數,即可計算樣本的楊氏係數。為了驗證方法正確性,本研究以兩種材料: (1)聚苯乙烯和(2)PC-12類神經細胞作為實驗的樣本。由結果顯示,兩種樣本量測出的楊氏係數之數量級皆與文獻相符,成功建立半接觸式在樣本的力學性質評估之應用方法。
In the applications of atomic force microscopy, the tapping mode has better resolution than the other measurement modes, and the gentle tapping force on the sample surface can reduce the possibility of sample damage. The goal of this study is to develop a tapping mode method to estimate the distribution of mechanical properties of biological materials. By a single scan and based on a mechanical model of the probe driven by the non-conservative force from the intermittent contact force, the Young's modulus of the sample can be calculated from the phase signals and the surface energy due to the adhesion of cell to the probe. Two material samples, namely, polystyrene and PC-12 neuron-like cells are employed to verify the applicability of the method. The results revealed that orders of the magnitude of Young’s modulus of these two samples are consistent with the literature, which indicated that a new method for estimating the distribution of mechanical properties of biological materials is established.
[1] E. A. Evans, and R. M. Hochmuth, “Membrane Viscoelasticity,” Biophysical Journal, vol. 16, 1976.
[2] A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phycial Review Letters, vol. 24, Number 4, 26 January, 1970.
[3] C. Gosse, and V. Croquette, “Magnetic Tweezers: Micromanipulation and Force Measurement at the Molecular Level,” Biophysical Journal, vol. 82, June, 2002.
[4] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phycial Review Letters. 56, 1986.
[5] M. Y. Lin, C.-S. Chang, and W. Li, “An Introduction to the Principle of Atomic Force Microscope (I),” 科儀新知, vol. 27 (2), 2005.
[6] H. Hertz, “On the Contact of Elastic Solids,” Jreine Angew. Mathematick, vol. 92, 1882.
[7] I. N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” International Journal of Engineering Science, vol. 3, 1965.
[8] Y. C. Fung, “Biomechanics: Mechanical Properties of Living Tissues, 2nd ed.,” Springer-Verlag, 1972.
[9] A. Pugh, “An Introduction to Tensegrity ” University of California Press (Berkeley). , 1976.
[10] G. G. Bilodeau, “Regular Pyramid Punch Problem,” Journal of Applied Mechanics, vol. 59, pp. 5, sebetember, 1992.
[11] B. J. Briscoe, K. S. Sebastian, and M. J. Adams, “The effect of indenter geometry on the elastic response to indentation,” J. Phys. D: Appl. Phys., vol. 27, 28 January 1994.
[12] M. Radmacher, M. Fritz, C. M. Kacher et al., “Measuring the Viscoelastic Properties of Human Platelets with the Atomic Force Microscope,” Biophysical Journal, vol. 70, January 1996
[13] K. D. Costa, and F. C. P. Yin, “Analysis of Indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy,” Journal of Biomechanical Engineering, vol. 121, October, 1999.
[14] A. B. Mathur, A. M. Collinsworth, W. M. Reichert et al., “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” Journal of Biomechanics, vol. 34, 2001.
[15] 李宗翰, “單軸應變對3T3纖維母細胞機械特性影響之研究,” 國立成功大學微機電系統工程研究所碩士論文, 2005.
[16] K. D. Costa, A. J. Sim, and F. C.-P. Yin, “Non-Hertzian Approach toAnalyzing Mechanical Properties of Endothelial Cells Probed by Atomic Force Microscopy,” Journal of Biomechanical Engineering, vol. 128, April 2006.
[17] 張嘉峰, “應用原子力顯微術於PC-12類神經細胞之生物力學研究,” 國立成功大學微機電系統工程研究所碩士論文, 2006.
[18] 馮俊雄, “應用原子力顯微鏡探討於PC-12類神經細胞於微小基底表面之黏彈力學性質,” 國立成功大學機械工程研究所碩士論文, 2007.
[19] 藍宏銘, “原子力顯微術於PC-12類神經細胞軸突再生研究,” 國立成功大學機械工程研究所碩士論文, 2008.
[20] P. Maivald., H. J. ButtS, A. C. Gould et al., “Using force modulation to image surface elasticities with the atomic force microscope,” Nanotechnology 2, 20 February, 1991.
[21] M. Radmacher, R. W. Tillmann, and H. E. Gaub, “Imaging viscoelasticity by force modulation with the atomic force microscope,” Biophysical Journal, vol. 64, pp. 8, March 1993.
[22] S. A. S. Asif, R. J. Colton, and K. J. Wahl, “Nanoscale Surface Mechanical Property Measurements: Force Modulation Techniques Applied to Nanoindentation,” Interfacial Properties on the Submicron Scale, 2000.
[23] R. E. Mahaffy, C. K. Shih, F. C. MacKintosh et al., “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phycial Review Letters, vol. 85, 24 July 2000.
[24] S. A. S. Asif, K. J. Wahl, R. J. Colton et al., “Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation,” Journal of Applied Physics, vol. 90, Number 3, 1 August, 2001.
[25] J. Alcaraz, L. Buscemi, M. Grabulosa et al., “Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy,” Biophysical Journal, vol. 84, March, 2003.
[26] E. A. G. Peeters, C. W. J. Oomens, C. V. C. Bouten et al., “Viscoelastic Properties of Single Attached Cells Under Compression,” Journal of Biomechanical Engineering, vol. 127, April, 2005.
[27] P. Cañadas, S. Wendling-Mansuy, and D. Isabey, “Frequency Response of a Viscoelastic Tensegrity Model: Structural Rearrangement Contribution to Cell Dynamics,” Journal of Biomechanical Engineering, vol. 128, August, 2006.
[28] J. Israelachvili, “Intermolecular and Surface Forces,” Academic, London, 1985.
[29] J. Chen, R. K. Workman, D. Sarid et al., “Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever,” Nanotechnology 5, 1994.
[30] J. Tamayo, and R. Garcı´a, “Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy,” Langmuir, vol. 12, 1996.
[31] M. Ashhab, M. V. Salapaka, M. Dahleh et al., “Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy,” Nonlinear Dynamics 20, 1999.
[32] R. Garcı´a, and A. S. Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phycial Review B, vol. 60, Number 7, 15 August, 1999.
[33] R. Garcı´a, and A. S. Paulo, “Dynamics of a vibrating tip near or in intermittent contact with a surface,” Phycial Review B, vol. 61, Number 20, 15 May, 2000.
[34] B. Anczykowski, B. Gotsmann, H. Fuchs et al., “How to measure energy dissipation in dynamic mode atomic force microscopy,” Applied Surface Science, vol. 140, 1999.
[35] J. Tamayo, and R. Garcı´a, “Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy,” Applied Physics Letters, vol. 73, Number 20, 16 November, 1998.
[36] H. Bodiguel, H. Montes, and C. Fretigny, “Depth sensing and dissipation in tapping mode atomic force microscopy,” Review of Scientific Instruments, vol. 75, Number 8, August, 2004.
[37] N. a. F. Martinez, and R. Garcia, “Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy,” Nanotechnology 17, 2006.
[38] A. Nayak, and K. A. Suresh, “Mechanical Properties of Langmuir-Blodgett Films of a Discogen-DNA Complex by Atomic Force Microscopy,” J. Phys. Chem. B, 113 (12), 16 February, 2009.
[39] Veeco Instruments, https://www.veecoprobes.com.
[40] M. Lee, and W. Jhe, “General Theory of Amplitude-Modulation Atomic Force Microscopy,” Phycial Review Letters vol. 97, 21 July, 2006.
[41] A. S. Paulo, and R. Garcı´a, “Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy,” Phycial Review B, vol. 64, 2001.
[42] N. Jalili, and K. Laxminarayana, “A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences,” Mechatronics, vol. 14, 2004.
[43] R. Garcia, C. J. Go´mez, N. F. Martinez et al., “Identification of Nanoscale Dissipation Processes by Dynamic Atomic Force Microscopy,” Phycial Review Letters, vol. 97, 7 July, 2006.
[44] K. Kendall, “The adhesion and surface energy of elastic solids,” J. Phys. D: Appl. Phys., vol. 4, 1971.
[45] Wikipedia, http://en.wikipedia.org/wiki/Polystyrene.
[46] J. A. S. Cleaver, and L. Looi, “AFM Study Of Adhesion Between Polystyrene Particles - The Influence Of Relative Humidity And Applied Load,” Powder Technology, vol. 174, 2007.
[47] D. Bachmann, and C. Hierold, “Determination of pull-off forces of textured silicon surfaces by AFM force curve analysis,” Journal Of Micromechanics And Microengineering, vol. 17, 2007.
[48] E. A. Evans, “Detailed Mechanics Of Membrane-Membrane Adhesion And Separation: II. Discrete Kinetically Trapped Molecular Cross-Bridges,” Biophys. J., vol. 48, July, 1985.
[49] J. L. Mege, C. Capo, A.-M. Benoliel et al., “Use Of Cell Contour Analysis To Evaluate The Affinity Between Macrophages And Glutaraldehyde-Treated Erythrocytes,” Biophys. J., vol. 52, August, 1987.
[50] B. M. Goubert, D. Bellgrau, and D. F. Gerson, “Cell Surface Energy and Membrane Associated Actin in Lymphocytes,” Cell Biophysics, vol. 13, September, 1988.
[51] Y. Shen, J. L. Sun, A. Zhang et al., “Shape Recovering Of Live Endothelial Cell Under Atomic Force Microscopy Imaging,” Engineering in Medicine and Biology Society, vol. 1, September, 2004.