| 研究生: |
孫偉傑 Lacson, Carl Francis Zulueta |
|---|---|
| 論文名稱: |
以化學沉澱及流體化床結晶法處理及回收工業廢水中之氟化物 FLUORIDE REMOVAL FOR INDUSTRIAL WASTEWATER BY CHEMICAL PRECIPITATION BASED TREATMENT AND POTENTIAL RECOVERY BY FLUIDIZED-BED CRYSTALLIZATION PROCESS |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 260 |
| 中文關鍵詞: | 氟化物 、化學沉降 、顆粒輔助沉澱 、流體化床結晶 、流體化床均質結晶 |
| 外文關鍵詞: | Fluoride, Chemical Precipitation, Ballasted Precipitation, Fluidized bed crystallization, Fluidized-Bed Homogenous Crystallization |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] M.B. Hocking, D. Hocking, T.A. Smith, FLUORIDE DISTRIBUTION AND DISPERSION PROCESSES ABOUT AN INDUSTRIAL POINT SOURCE IN A FORESTED COASTAL ZONE, 14 (1980) 133–157.
[2] S. Rao, N. V Mogili, A. Priscilla, A. Lydia, Aqueous chemistry of anthropogenically contaminated Bengaluru lakes, 5 (2020).
[3] H. Zuo, L. Chen, M. Kong, L. Qiu, P. Lü, P. Wu, Y. Yang, K. Chen, Toxic effects of fluoride on organisms, Life Sci. 198 (2018) 18–24. https://doi.org/10.1016/j.lfs.2018.02.001.
[4] J.A. Camargo, Fluoride toxicity to aquatic organisms: A review, Chemosphere. 50 (2003) 251–264. https://doi.org/10.1016/S0045-6535(02)00498-8.
[5] G. Biswas, S.G. Thakurta, J. Chakrabarty, K. Adhikari, S. Dutta, Evaluation of fluoride bioremediation and production of biomolecules by living cyanobacteria under fluoride stress condition, Ecotoxicol. Environ. Saf. 148 (2018) 26–36. https://doi.org/10.1016/j.ecoenv.2017.10.019.
[6] Ministry of the Environment Republic of Indonesia, Regulation of the Minister of the Environment No. 5 of 2014 on Wastewater Standards, Indonesia, 2014.
[7] Environmental Management Bureau (DENR), DENR Administrative Order No. 2016-08, Quezon, City, 2016. https://pab.emb.gov.ph/wp-content/uploads/2017/07/DAO-2016-08-WQG-and-GES.pdf.
[8] Notification of the Ministry of Industry No. 332 (BE 2521), (1978) Government Gazette, Volume 95, Episode 68,. http://www.pcd.go.th/info_serv/reg_std_water01.html?fbclid=IwAR1Xqz0-iFdhSBsoz4wryn7h8xguJDweBIaTfwIjyr2Ex4aDvdsLoJPv3S4 (accessed March 6, 2019).
[9] Vietnam Environment Administration, National Technical Regulation on Industrial Wastewater, 2011.
[10] N. Drouiche, S. Aoudj, H. Lounici, M. Drouiche, T. Ouslimane, N. Ghaffour, Fluoride removal from pretreated photovoltaic wastewater by electrocoagulation: An investigation of the effect of operational parameters, Procedia Eng. 33 (2012) 385–391. https://doi.org/10.1016/j.proeng.2012.01.1218.
[11] H. Paudyal, K. Inoue, H. Kawakita, K. Ohto, H. Kamata, S. Alam, Removal of fluoride by effectively using spent cation exchange resin, J. Mater. Cycles Waste Manag. 20 (2018) 975–984. https://doi.org/10.1007/s10163-017-0659-4.
[12] S. Aoudj, A. Khelifa, N. Drouiche, R. Belkada, D. Miroud, Simultaneous removal of chromium(VI) and fluoride by electrocoagulation-electroflotation: Application of a hybrid Fe-Al anode, Chem. Eng. J. 267 (2015) 153–162. https://doi.org/10.1016/j.cej.2014.12.081.
[13] K. Majewska-Nowak, M. Grzegorzek, M. Kabsch-Korbutowicz, Removal of fluoride ions by batch electrodialysis, Environ. Prot. Eng. 41 (2015) 67–81. https://doi.org/10.5277/epe150106.
[14] S.B. Zueva, F. Ferella, G. Taglieri, I. De Michelis, I. Pugacheva, F. Vegliò, Zero-Liquid Discharge Treatment of Wastewater from a Fertilizer Factory, Sustainability. 12 (2020) 397. https://doi.org/10.3390/su12010397.
[15] J.Y. Chen, C.W. Lin, P.H. Lin, C.W. Li, Y.M. Liang, J.C. Liu, S.S. Chen, Fluoride recovery from spent fluoride etching solution through crystallization of Na3AlF6 (synthetic cryolite), Sep. Purif. Technol. 137 (2014) 53–58. https://doi.org/10.1016/j.seppur.2014.09.019.
[16] A. Ezzeddine, N. Meftah, A. Hannachi, Removal of fluoride from an industrial wastewater by a hybrid process combining precipitation and reverse osmosis, Desalin. Water Treat. 55 (2015) 2618–2625. https://doi.org/10.1080/19443994.2014.959737.
[17] W.W. Clarkson, A.G. Collins, P.L. Sheehan, Effect of fluoride on nitrification of a concentrated industrial waste, Appl. Environ. Microbiol. 55 (1989) 240–245. https://doi.org/10.1128/aem.55.1.240-245.1989.
[18] M.S.A. Zaher, S.M.A. Wahab, M.. Taha, A.M. Masoud, Sorption Characteristics of Iron , Fluoride and Phosphate from Wastewater of Phosphate Fertilizer Plant using Natural Sodium Bentonite, 8 (2018). https://doi.org/10.4172/2155-9589.1000186.
[19] M. Al-Harahsheh, M. Batiha, S. Kraishan, H. Al-Zoubi, Precipitation treatment of effluent acidic wastewater from phosphate-containing fertilizer industry: Characterization of solid and liquid products, Sep. Purif. Technol. 123 (2014) 190–199. https://doi.org/10.1016/j.seppur.2013.12.027.
[20] P. Parthasarathy, S.K. Narayanan, Effect of Hydrothermal Carbonization Reaction Parameters on, Environ. Prog. Sustain. Energy. 33 (2014) 676–680. https://doi.org/10.1002/ep.
[21] S.. Abou-Elela, E.M. El-kamah, H.I. Aly, E. Abou-Taleb, Management of Wastewater from the fertilizer industry, Water Sci. Technol. 32 (1995) 45–54.
[22] C.C. Liu, J.C. Liu, Coupled precipitation-ultrafiltration for treatment of high fluoride-content wastewater, J. Taiwan Inst. Chem. Eng. 58 (2016) 259–263. https://doi.org/10.1016/j.jtice.2015.05.038.
[23] C.J. Huang, J.C. Liu, Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer, Water Res. 33 (1999) 3403–3412. https://doi.org/10.1016/S0043-1354(99)00065-2.
[24] M.F. Chang, J.C. Liu, Precipitation Removal of Fluoride from Semiconductor Wastewater, J. Environ. Eng. 133 (2007) 419–425. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:4(419).
[25] M.D.G. De Luna, Warmadewanthi, J.C. Liu, Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer, 347 (2009) 64–68. https://doi.org/10.1016/j.colsurfa.2008.12.006.
[26] H. Huang, J. Liu, P. Zhang, D. Zhang, F. Gao, Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation, Chem. Eng. J. 307 (2017) 696–706. https://doi.org/10.1016/j.cej.2016.08.134.
[27] J. Wang, J. Zhao, X. Meng, J. Hua, S. Jiao, Y. Zheng, Research status and prospect of fluorinated wastewater and sludge utilization in photovoltaic industry, J. Environ. Eng. Technol. 8 (2018). https://doi.org/doi:10.3969/j.issn.1674-991X.2018.03.044.
[28] P. Sengupta, S. Saha, S. Banerjee, A. Dey, Removal of fluoride ion from drinking water by a new Fe(OH)3/ nano CaO impregnated chitosan composite adsorbent, Polym. Technol. Mater. 00 (2020) 1–13. https://doi.org/10.1080/25740881.2020.1725567.
[29] Z. Yu, C. Xu, K. Yuan, X. Gan, C. Feng, X. Wang, L. Zhu, G. Zhang, D. Xu, Characterization and adsorption mechanism of ZrO 2 mesoporous fibers for health-hazardous fluoride removal, J. Hazard. Mater. 346 (2018) 82–92. https://doi.org/10.1016/j.jhazmat.2017.12.024.
[30] C.F.Z. Lacson, M.-C. Lu, Y.-H. Huang, Fluoride-containing water : A global perspective and a pursuit to sustainable water defluoridation management -An overview, J. Clean. Prod. 280 (2021) 1–20. https://doi.org/10.1016/j.jclepro.2020.124236.
[31] R. Malaisamy, A. Talla-Nwafo, K.L. Jones, Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions, Sep. Purif. Technol. 77 (2011) 367–374. https://doi.org/10.1016/j.seppur.2011.01.005.
[32] S. Garcia-segura, M.M.S.G. Eiband, J.V. de Melo, C.A. Martínez-Huitle, Electrocoagulation and advanced electrocoagulation processes : A general review about the fundamentals , emerging applications and its association with other technologies, J. Electroanal. Chem. 801 (2017) 267–299. https://doi.org/10.1016/j.jelechem.2017.07.047.
[33] A.Y. Bagastyo, A.D. Anggrainy, C.S. Nindita, Electrodialytic removal of fl uoride and calcium ions to recover phosphate from fertilizer industry wastewater, Sustain. Environ. Res. 27 (2017) 230–237. https://doi.org/10.1016/j.serj.2017.06.002.
[34] P. Rao, N. Suneetha, Kp. Rupa, V. Sabitha, Kk. Kumar, S. Mohanty, A. Kanagasabapathy, Defluoridation of water by a one step modification of the Nalgonda technique, Ann. Trop. Med. Public Heal. 1 (2008) 56. https://doi.org/10.4103/1755-6783.50685.
[35] L. Wang, Y. Zhang, N. Sun, W. Sun, Y. Hu, H. Tang, Precipitation Methods Using Calcium-Containing Ores for Fluoride Removal in Wastewater, (2019) 30–33. https://doi.org/10.3390/min9090511.
[36] W. Ren, Z. Zhou, L. Jiang, D. Hu, Z. Qiu, H. Wei, L. Wang, A cost-effective method for the treatment of reject water from sludge dewatering process using supernatant from sludge lime stabilization, Sep. Purif. Technol. 142 (2015) 123–128. https://doi.org/10.1016/j.seppur.2014.12.037.
[37] K. Van den Broeck, N. Van Hoornick, J. Van Hoeymissen, R. De Boer, A. Giesen, D. Wilms, Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor, IEEE Trans. Semicond. Manuf. 16 (2003) 423–428. https://doi.org/10.1109/TSM.2003.815624.
[38] R. Aldaco, A. Irabien, P. Luis, Fluidized bed reactor for fluoride removal, Chem. Eng. J. 107 (2005) 113–117. https://doi.org/10.1016/j.cej.2004.12.017.
[39] R. Aldaco, A. Garea, A. Irabien, Fluoride recovery in a fluidized bed: Crystallization of calcium fluoride on silica sand, Ind. Eng. Chem. Res. 45 (2006) 796–802. https://doi.org/10.1021/ie050950z.
[40] R. Aldaco, A. Garea, A. Irabien, Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor, Water Res. 41 (2007) 810–818. https://doi.org/10.1016/j.watres.2006.11.040.
[41] R. Aldaco, A. Garea, A. Irabien, Particle growth kinetics of calcium fluoride in a fluidized bed reactor, Chem. Eng. Sci. 62 (2007) 2958–2966. https://doi.org/10.1016/j.ces.2007.02.045.
[42] L. Deng, X. Zhang, T. Huang, J. Zhou, Investigation of fluorapatite crystallization in a fluidized bed reactor for the removal of fluoride from groundwater, J. Chem. Technol. Biotechnol. 94 (2019) 569–581. https://doi.org/10.1002/jctb.5803.
[43] L. Deng, Y. Wang, X. Zhang, J. Zhou, T. Huang, Defluoridation by fluorapatite crystallization in a fluidized bed reactor under alkaline groundwater condition, 272 (2020). https://doi.org/10.1016/j.jclepro.2020.122805.
[44] L. Deng, Y. Liu, T. Huang, T. Sun, Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals, Chem. Eng. J. 287 (2016) 83–91. https://doi.org/10.1016/j.cej.2015.11.011.
[45] Y. Huang, S. Garcia-segura, M. Daniel, G. De Luna, A.S. Sioson, M. Lu, Beyond carbon capture towards resource recovery and utilization : fluidized-bed homogeneous granulation of calcium carbonate from captured CO2, Chemosphere. 250 (2020) 126325. https://doi.org/10.1016/j.chemosphere.2020.126325.
[46] N.N.N. Mahasti, Y.J. Shih, X.T. Vu, Y.H. Huang, Removal of calcium hardness from solution by fluidized-bed (FBHC) process, J. Taiwan Inst. Chem. Eng. 0 (2017) 1–8. https://doi.org/10.1016/j.jtice.2017.06.040.
[47] K.A.A. Tiangco, M.D.G. de Luna, A.C. Vilando, M.C. Lu, Removal and recovery of calcium from aqueous solutions by fluidized-bed homogeneous crystallization, Process Saf. Environ. Prot. 128 (2019) 307–315. https://doi.org/10.1016/j.psep.2019.06.007.
[48] K. Lertratwattana, P. Kemacheevakul, S. Garcia-segura, M. Lu, Hydrometallurgy Recovery of copper salts by fluidized-bed homogeneous granulation process : High selectivity on malachite crystallization, Hydrometallurgy. 186 (2019) 66–72. https://doi.org/10.1016/j.hydromet.2019.03.015.
[49] F.C. Ballesteros, A. Frances, S. Salcedo, A.C. Vilando, Y. Huang, M. Lu, Removal of nickel by homogeneous granulation in a fluidized-bed reactor, Chemosphere. 164 (2016) 59–67. https://doi.org/10.1016/j.chemosphere.2016.08.081.
[50] M.D.G. de Luna, L.H.S. Paulino, C.M. Futalan, M.C. Lu, Recovery of zinc granules from synthetic electroplating wastewater using fluidized- bed homogeneous crystallization process, Int. J. Environ. Sci. Technol. (2019). https://doi.org/10.1007/s13762-019-02439-8.
[51] L. Lee, E. Bayon, F.C. Ballesteros, S. Garcia-segura, M. Lu, Water reuse nexus with resource recovery : On the fluidized-bed homogeneous crystallization of Libethenite from semiconductor wastewater effluents containing copper and phosphate, (n.d.) 1–23.
[52] A. Banerjee, Groundwater fluoride contamination: A reappraisal, Geosci. Front. 6 (2015) 277–284. https://doi.org/10.1016/j.gsf.2014.03.003.
[53] H. Wang, R. Li, C. Fan, J. Feng, S. Jiang, Z. Han, Removal of fluoride from the acid digestion liquor in production process of nitrophosphate fertilizer, J. Fluor. Chem. 180 (2015) 122–129. https://doi.org/10.1016/j.jfluchem.2015.09.009.
[54] J.S. Dehesa, J.C. Angulo, T. Koga, Y. Kasai, Bounds to some local electron-pair properties with application to two-electron ions, Phys. Rev. A. 50 (1994) 857–860. https://doi.org/10.1103/PhysRevA.50.857.
[55] G.. Hawley, The Condensed Chemical Dictionary, 11th ed., Van Nostrand Reinold, New York N.Y., 1987. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_004f/0901b8038004f697.pdf.
[56] O. Fejerskov, A. Thylstrup, M.J. Larsen, Rational Use of Fluorides in Caries Prevention, Acta Odontol. Scand. 39 (2011) 241–249. https://doi.org/10.3109/00016358109162285.
[57] K. Rošin-Grget, The cariostatic mechanisms of fluoride, Acta Med. Acad. 42 (2013) 179–188. https://doi.org/10.5644/ama2006-124.85.
[58] S. Peckham, N. Awofeso, Water Fluoridation : A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention, 2014 (2014). https://doi.org/10.1155/2014/293019.
[59] Nuffield Council on Bioethics, Public health : ethical issues, 2007.
[60] R. Piekos, S. Paslawska, P. R., P. S., J.M. López-Vilariño, G. Fernández-Martínez, I. Turnes-Carou, S. Muniategui-Lorenzo, P. López-Mahía, D. Prada-Rodríguez, M.M. Životić, V. V. Jovanović, N.G. Manić, D.D. Stojiljković, Leaching Characteristics of Fluoride from Coal Fly ash, Environ. Technol. (United Kingdom). 45 (2007) 188–192. https://doi.org/10.1177/1524839914539961.
[61] Y. Li, H. Zhang, Z. Zhang, L. Shao, P. He, Treatment and resource recovery from inorganic fluoride-containing waste produced by the pesticide industry, J. Environ. Sci. (China). 31 (2015) 21–29. https://doi.org/10.1016/j.jes.2014.10.016.
[62] Y.-J. Kim, T.I. Qureshi, Recycling of calcium fluoride sludge as additive in the solidification–stabilization of fly ash, J. Environ. Eng. Sci. 5 (2006) 377–381. https://doi.org/10.1139/s06-003.
[63] P. Zhu, Z. Cao, Y. Ye, G. Qian, B. Lu, M. Zhou, J. Zhou, Reuse of hazardous calcium fluoride sludge from the integrated circuit industry, Waste Manag. Res. 31 (2013) 1154–1159. https://doi.org/10.1177/0734242X13502379.
[64] W.T. Lin, Characterization and permeability of cement-based materials containing calcium fluoride sludge, Constr. Build. Mater. 196 (2019) 564–573. https://doi.org/10.1016/j.conbuildmat.2018.11.126.
[65] C.F.Z. Lacson, M. Lu, Y. Huang, Fluoride network and circular economy as potential model for sustainable development-A review, Chemosphere. 239 (2020) 124662. https://doi.org/10.1016/j.chemosphere.2019.124662.
[66] T.P. Singh, S. Ghosh, M. Cb, Adsorption of Fluoride From Industrial Wastewater in Fixed Bed Column Using Java Plum (Syzygium Cumini), Asian J. Pharm. Clin. Res. 9 (2017) 320. https://doi.org/10.22159/ajpcr.2016.v9s3.12613.
[67] J. Shen, A.I. Schäfer, Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis, Sci. Total Environ. 527–528 (2015) 520–529. https://doi.org/10.1016/j.scitotenv.2015.04.037.
[68] H. Paudyal, Adsorptive Removal of Trace Concentration of Fluoride Using Orange Waste Treated Using Concentrated Sulfuric Acid, Int. J. Mater. Sci. Appl. 6 (2017) 212. https://doi.org/10.11648/j.ijmsa.20170604.18.
[69] E. Kusrini, N. Sofyan, N. Suwartha, G. Yesya, C.R. Priadi, Chitosan-praseodymium complex for adsorption of fluoride ions from water, J. Rare Earths. 33 (2015) 1104–1113. https://doi.org/10.1016/S1002-0721(14)60533-0.
[70] WHO, Guidelines for Drinking-Water Quality -4th ed., 2011. https://doi.org/10.1007/springerreference_30502.
[71] V. Chaudhary, S. Prasad, Rapid removal of fluoride from aqueous media using activated dolomite, Anal. Methods. 68 (2013) 100–100. https://doi.org/10.7868/s0044450213010210.
[72] D. Mohan, R. Sharma, V.K. Singh, P. Steele, C.U. Pittman, Fluoride Removal from Water using Bio-Char , a Green Waste , Low-Cost Adsorbent : Equilibrium Uptake and Sorption Dynamics Modeling, Ind. Eng. Chem. Res. (2011) 900–914. https://doi.org/10.1021/ie202189v.
[73] A. Fakhri, S. Adami, Response Surface Methodology for Adsorption of Fluoride Ion Using Nanoparticle of Zero Valent Iron from Aqueous Solution, J. Chem. Eng. Process Technol. 04 (2013) 4–9. https://doi.org/10.4172/2157-7048.1000161.
[74] O. Barbier, L. Arreola-Mendoza, L.M. Del Razo, Molecular mechanisms of fluoride toxicity, Chem. Biol. Interact. 188 (2010) 319–333. https://doi.org/10.1016/j.cbi.2010.07.011.
[75] A. Naghizadeh, K. Gholami, Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions, J. Water Health. 15 (2017) 555–565. https://doi.org/10.2166/wh.2017.052.
[76] R.L. Metcalf, Fluorine-Containing Insecticides, Pharmacol. Fluoride. (1966) 23–25.
[77] D.C. MacLean, D.C. McCune, L.H. Weinstein, R.H. Mandl, G.N. Woodruff, Effects of acute hydrogen fluoride and nitrogen dioxide exposures on citrus and ornamental plants of central Florida, Environ. Sci. Technol. 2 (1968) 444–449. https://doi.org/10.1021/es60018a002.
[78] USGS, Mineral Commodity Summaries: FLUORSPAR, 2019.
[79] K. Matsuzawa, D. Atarashi, M. Miyauchi, E. Sakai, Interactions between fluoride ions and cement paste containing superplasticizer, Cem. Concr. Res. 91 (2017) 33–38. https://doi.org/10.1016/j.cemconres.2016.10.006.
[80] J.R. Griffith, J.E. Quick, Fluorine-Containing Epoxy Components and Plastics, Adv. Chem. (1970) 8–15.
[81] I.M. Hammouda, E.E. Al-Wakeel, Effect of water storage on fluoride release and mechanical properties of a polyacid-modified composite resin (compomer), J. Biomed. Res. 25 (2011) 254–258. https://doi.org/10.1016/S1674-8301(11)60034-1.
[82] J. Alary, P. Bourbon, J. Esclassan, J.C. Lepert, J. Vandaele, F. Klein, Fluoride emissions from an electric arc furnace and their abatement using bag filters, Environ. Technol. Lett. 3 (1982) 503–510. https://doi.org/10.1080/09593338209384155.
[83] F.M. Ebrahim, T.N. Nguyen, S. Shyshkanov, A. Gladysiak, P. Favre, A. Zacharia, G. Itskos, P.J. Dyson, K.C. Stylianou, Selective, Fast-Response, and Regenerable Metal-Organic Framework for Sampling Excess Fluoride Levels in Drinking Water, J. Am. Chem. Soc. (2019) 5–7. https://doi.org/10.1021/jacs.8b11907.
[84] F. Kiliçel, B. Dağ, Determination of Flouride Ions in Resource and Mineral Waters of the Van Region by Using Ion-Selective Electrode Method, Adv. Anal. Chem. 4 (2014) 9–12. https://doi.org/10.5923/j.aac.20140401.02.
[85] B. Walna, I. Kurzyca, E. Bednorz, L. Kolendowicz, Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland), Environ. Monit. Assess. 185 (2013) 5497–5514. https://doi.org/10.1007/s10661-012-2962-9.
[86] The Water Cycle and Climate In California, (n.d.). http://geologycafe.com/water/watercycle.html (accessed April 6, 2019).
[87] K. Mondal, S. Nath, Fluoride Contamination on Aquatic organisms and human body at Purulia and Bankura District of West Bengal , India, 4 (2015) 112–114.
[88] I. Florentina, B. Io, The Effects of Air Pollutants on Vegetation and the Role of Vegetation in Reducing Atmospheric Pollution, Impact Air Pollut. Heal. Econ. Environ. Agric. Sources. (2011). https://doi.org/10.5772/17660.
[89] R. Ranjan, A. Ranjan, Sources of Fluoride Toxicity, (2015) 11–21. https://doi.org/10.1007/978-3-319-17512-6.
[90] L.H. Weinstein, Uptake of fluorid e and aluminum by plants grown in contaminated soils, Water, Air, Soil Pollut. 24 (1985) 215–223.
[91] J. Hemens, R.J. Warwick, The effects of fluoride on estuarine organisms, Water Res. 6 (1972) 1301–1308. https://doi.org/10.1016/0043-1354(72)90194-7.
[92] J.A. Nell, G. Livanos, Effects of fluoride concentration in seawater on growth and fluoride accumulation by Sydney rock oyster (Saccostrea commercialis) and flat oyster (Ostrea angasi) spat, Water Res. 22 (1988) 749–753. https://doi.org/10.1016/0043-1354(88)90185-6.
[93] J.M. Neuhold, W.F. Sigler, Effects of Sodium Fluoride on Carp and Rainbow Trout, Trans. Am. Fish. Soc. (1960) 37–41. https://doi.org/10.1577/1548-8659(1960)89.
[94] J. Gao, C. Liu, J. Zhang, S. Zhu, Y. Shen, R. Zhang, Effect of fluoride on photosynthetic pigment content and antioxidant system of Hydrilla verticillata, Int. J. Phytoremediation. 20 (2018) 1257–1263. https://doi.org/10.1080/15226514.2017.1319328.
[95] S. Karmakar, J. Mukherjee, S. Mukherjee, Removal of fluoride contamination in water by three aquatic plants, Int. J. Phytoremediation. 18 (2016) 222–227. https://doi.org/10.1080/15226514.2015.1073676.
[96] N.K. Mondal, R. Bhaumik, U. Dey, K.C. Pal, C. Das, A. Maitra, J.K. Datta, Fluoride remediation using floating macrophytes, Commun. Plant Sci. 4 (2014) 23–33. http://complantsci.files.wordpress.com/2014/04/complantsci_4_1_4.pdf.
[97] S. Sinha, R. Saxena, S. Singh, Fluoride removal from water by Hydrilla verticillata (l.f.) Royle and its toxic effects, Bull. Environ. Contam. Toxicol. 65 (2000) 683–690. https://doi.org/10.1007/s001280000177.
[98] S. Karmakar, J. Mukherjee, S. Mukherjee, Biosorption of fluoride by water lettuce (Pistia stratiotes) from contaminated water, Int. J. Environ. Sci. Technol. 15 (2017) 801–810. https://doi.org/10.1007/s13762-017-1439-3.
[99] Y. Xia, X. Huang, W. Li, Y. Zhang, Z. Li, Facile defl uoridation of drinking water by forming shell @ fluorapatite nanoarray during boiling egg shell, J. Hazard. Mater. 361 (2019) 321–328. https://doi.org/10.1016/j.jhazmat.2018.09.007.
[100] L. Chen, B. He, S. He, T. Wang, C. Su, Y. Jin, Fe ― Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism, Powder Technol. 227 (2012) 3–8. https://doi.org/10.1016/j.powtec.2011.11.030.
[101] D.M. Damkaer, D.B. Dey, Evidence for Fluoride Effects on Salmon Passage at John Day Dam, Columbia River, 1982-1986, North Am. J. Fish. Manag. (2011) 37–41. https://doi.org/10.1577/1548-8675(1989)009.
[102] G. Singh, B. Kumari, G. Sinam, N. Kumar, S. Mallick, Fluoride distribution and contamination in the water , soil and plants continuum and its remedial technologies , an Indian perspective e a, Environ. Pollut. 239 (2018) 95–108. https://doi.org/10.1016/j.envpol.2018.04.002.
[103] S. Joshi, M. Adhikari, R.R. Pradhananga, Adsorption of Fluoride Ion onto Zirconyl-Impregnated Activated Carbon Prepared from Lapsi Seed Stone, J. Nepal Chem. Soc. 30 (2013) 13–23. https://doi.org/10.3126/jncs.v30i0.9330.
[104] W. Luo, X. Gao, X. Zhang, Geochemical processes controlling the groundwater chemistry and fluoride contamination in the yuncheng basin, China—an area with complex hydrogeochemical conditions, PLoS One. 13 (2018) 1–25. https://doi.org/10.1371/journal.pone.0199082.
[105] W.M. Edmunds, P.L. Smedley, Fluoride in natural waters, Essentials Med. Geol. Revis. Ed. (2013) 311–336. https://doi.org/10.1007/978-94-007-4375-5_13.
[106] USDA, USDA National Fluoride Database of Selected Beverages and Foods, Release 2, USDA Natl. Fluoride Database Sel. Beverages Foods. (2005) 26. http://www.ars.usda.gov/SP2UserFiles/Place/80400525/Data/Fluoride/F02.pdf.
[107] R. Fuge, M.J. Andrews, Fluorine in the UK environment, Environ. Geochem. Health. 10 (1988) 96–104. https://doi.org/10.1007/BF01758677.
[108] D. Kanduti, P. Sterbenk, and Artnik, Fluoride: a Review of Use and Effects on Health, Mater. Socio Medica. 28 (2016) 133. https://doi.org/10.5455/msm.2016.28.133-137.
[109] R. Ullah, M.S. Zafar, N. Shahani, Potential fluoride toxicity from oral medicaments: A review, Iran. J. Basic Med. Sci. 20 (2017) 841–848. https://doi.org/10.22038/ijbms.2017.9104.
[110] P.P. Sharma, V. Yadav, P.D. Maru, B.S. Makwana, S. Sharma, V. Kulshrestha, Mitigation of Fluoride from Brackish Water via Electrodialysis: An Environmentally Friendly Process, ChemistrySelect. 3 (2018) 779–784. https://doi.org/10.1002/slct.201701170.
[111] T.S. Hayes, M. M.M., G.J. Orris, N.M. Piatak, Fluorine, chap. G of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply, U.S. Geol. Surv. Prof. Pap. (2017) G1-g80. https://doi.org/https://doi.org/ 10.3133/pp1802G.
[112] M. Morton, Widespread Contamination Found in Northwest India’s Groundwater, Eos (Washington. DC). 100 (2019) 5–7. https://doi.org/10.1029/2019eo130161.
[113] R. V. Khandare, S.B. Desai, S.S. Bhujbal, A.D. Watharkar, S.P. Biradar, P.K. Pawar, S.P. Govindwar, Phytoremediation of fluoride with garden ornamentals Nerium oleander, Portulaca oleracea, and Pogonatherum crinitum, Environ. Sci. Pollut. Res. 24 (2017) 6833–6839. https://doi.org/10.1007/s11356-017-8424-8.
[114] J.E. Podgorski, P. Labhasetwar, D. Saha, M. Berg, Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India, Environ. Sci. Technol. 52 (2018) 9889–9898. https://doi.org/10.1021/acs.est.8b01679.
[115] M. Mohapatra, D. Hariprasad, L. Mohapatra, S. Anand, B.K. Mishra, Mg-doped nano ferrihydrite - A new adsorbent for fluoride removal from aqueous solutions, Appl. Surf. Sci. 258 (2012) 4228–4236. https://doi.org/10.1016/j.apsusc.2011.12.047.
[116] M. Grzegorzek, K. Majewska-Nowak, The use of electrodialysis with mono-anion permselective membranes for defluoridation, E3S Web Conf. 44 (2018) 1–8. https://doi.org/10.1051/e3sconf/20184400046.
[117] A.M. Ingallinella, V.A. Pacini, R.G. Fernández, R.M. Vidoni, G. Sanguinetti, Simultaneous removal of arsenic and fluoride from groundwater by coagulation-adsorption with polyaluminum chloride, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 46 (2011) 1288–1296. https://doi.org/10.1080/10934529.2011.598835.
[118] M. Rosales, O. Coreño, J.L. Nava, Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack, Chemosphere. 211 (2018) 149–155. https://doi.org/10.1016/j.chemosphere.2018.07.113.
[119] M.A. Sandoval, R. Fuentes, J.L. Nava, O. Coreño, Y. Li, J.H. Hernández, Simultaneous removal of fluoride and arsenic from groundwater by electrocoagulation using a filter-press flow reactor with a three-cell stack, Sep. Purif. Technol. 208 (2019) 208–216. https://doi.org/10.1016/j.seppur.2018.02.018.
[120] L. Delgadillo-Velasco, V. Hernandez-Montoya, F.J. Cervantes, M.A. Montes-Moran, D. Lira-Berlanga, Bone char with antibacterial properties for fl uoride removal : Preparation , characterization and water treatment, J. Environ. Manage. 201 (2017) 277–285. https://doi.org/10.1016/j.jenvman.2017.06.038.
[121] D. Rocha-Amador, M.E. Navarro, L. Carrizales, R. Morales, J. Calderón, Decreased intelligence in children and exposure to fluoride and arsenic in drinking water, Cad. Saude Publica. 23 (2007) S579–S587. https://doi.org/10.1590/S0102-311X2007001600018.
[122] M. Bashash, M. Marchand, H. Hu, C. Till, E.A. Martinez-Mier, B.N. Sanchez, N. Basu, K.E. Peterson, R. Green, L. Schnaas, A. Mercado-García, M. Hernández-Avila, M.M. Téllez-Rojo, Prenatal fluoride exposure and attention deficit hyperactivity disorder (ADHD) symptoms in children at 6–12 years of age in Mexico City, Environ. Int. 121 (2018) 658–666. https://doi.org/10.1016/j.envint.2018.09.017.
[123] N. Chen, Z. Zhang, C. Feng, M. Li, D. Zhu, R. Chen, N. Sugiura, An excellent fluoride sorption behavior of ceramic adsorbent, J. Hazard. Mater. 183 (2010) 460–465. https://doi.org/10.1016/j.jhazmat.2010.07.046.
[124] J.F.A. Silva, N.S. Graça, A.M. Ribeiro, A.E. Rodrigues, Electrocoagulation process for the removal of co-existent fluoride, arsenic and iron from contaminated drinking water, Sep. Purif. Technol. 197 (2018) 237–243. https://doi.org/10.1016/j.seppur.2017.12.055.
[125] R. Lavecchia, F. Medici, L. Piga, G. Rinaldi, Fluoride Removal from Water by Adsorption on a High Alumina Content Fluoride Removal from Water by Adsorption on a High Alumina Content Bauxite, Chem. Eng. Trans. 26 (2012). https://doi.org/10.3303/CET1226038.
[126] C. Till, R. Green, Controversy : The evolving science of fluoride : when new evidence doesn ’ t conform with existing beliefs, Pediatr. Res. (2020) 6–8. https://doi.org/10.1038/s41390-020-0973-8.
[127] Centers for Disease Control and Prevention, U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries, Public Health Rep. 130 (2015) 1–14. https://doi.org/10.1177/003335491513000408.
[128] T. Walker, L. Dickes, E. Crouch, Community water fluoridation perceptions and practice in the United States : challenges in governance and implementation, 22 (2020) 365–375. https://doi.org/10.2166/wp.2020.044.
[129] M.J. Addison, M.O. Rivett, H. Robinson, A. Fraser, A.M. Miller, P. Phiri, P. Mleta, R.M. Kalin, Fluoride occurrence in the lower East African Rift System , Southern Malawi, Sci. Total Environ. 712 (2020) 136260. https://doi.org/10.1016/j.scitotenv.2019.136260.
[130] V. Bhadja, J.S. Trivedi, U. Chatterjee, Efficacy of polyethylene Interpolymer membranes for fluoride and arsenic ion removal during desalination of water: Via electrodialysis, RSC Adv. 6 (2016) 67118–67126. https://doi.org/10.1039/c6ra11450d.
[131] W. Luo, X. Gao, X. Zhang, Geochemical processes controlling the groundwater chemistry and fluoride contamination in the yuncheng basin, China—an area with complex hydrogeochemical conditions, PLoS One. 13 (2018) 1–17. https://doi.org/10.1371/journal.pone.0199082.
[132] A.I. Alabdulaaly, A.I. Al-Zarah, M.A. Khan, Occurrence of fluoride in ground waters of Saudi Arabia, Appl. Water Sci. 3 (2013) 589–595. https://doi.org/10.1007/s13201-013-0105-2.
[133] J. Shen, A. Schäfer, Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review, Chemosphere. 117 (2014) 679–691. https://doi.org/10.1016/j.chemosphere.2014.09.090.
[134] T. Rango, J. Kravchenko, B. Atlaw, P.G. McCornick, M. Jeuland, B. Merola, A. Vengosh, Groundwater quality and its health impact: An assessment of dental fluorosis in rural inhabitants of the Main Ethiopian Rift, Environ. Int. 43 (2012) 37–47. https://doi.org/10.1016/j.envint.2012.03.002.
[135] J. Malago, E. Makoba, A.N.N. Muzuka, Fluoride Levels in Surface and Groundwater in Africa: A Review, Am. J. Water Sci. Eng. 3 (2017) 1. https://doi.org/10.11648/j.ajwse.20170301.11.
[136] L.S. Thakur, H. Goyal, P. Mondal, Simultaneous removal of arsenic and fluoride from synthetic solution through continuous electrocoagulation: Operating cost and sludge utilization, J. Environ. Chem. Eng. 7 (2019) 102829. https://doi.org/10.1016/j.jece.2018.102829.
[137] S. Mukherjee, V. Yadav, G. Halder, S. Banerjee, G. Halder, Characterization of a fluoride-resistant bacterium Acinetobacter sp. RH5 towards assessment of its water defluoridation capability, Appl. Water Sci. 7 (2015) 1923–1930. https://doi.org/10.1007/s13201-015-0370-3.
[138] M.M. Emamjomeh, M. Sivakumar, A.S. Varyani, Analysis and the understanding of fluoride removal mechanisms by an electrocoagulation/flotation (ECF) process, Desalination. 275 (2011) 102–106. https://doi.org/10.1016/j.desal.2011.02.032.
[139] N. Arahman, S. Mulyati, M.R. Lubis, R. Takagi, H. Matsuyama, The removal of fluoride from water based on applied current and membrane types in electrodialyis, J. Fluor. Chem. 191 (2016) 97–102. https://doi.org/10.1016/j.jfluchem.2016.10.002.
[140] G. Asgari, B. Roshani, G. Ghanizadeh, The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone, J. Hazard. Mater. 217–218 (2012) 123–132. https://doi.org/10.1016/j.jhazmat.2012.03.003.
[141] M.A. Sandoval, R. Fuentes, J.L. Nava, I. Rodríguez, Fluoride removal from drinking water by electrocoagulation in a continuous filter press reactor coupled to a flocculator and clarifier, Sep. Purif. Technol. 134 (2014) 163–170. https://doi.org/10.1016/j.seppur.2014.07.034.
[142] A. Guzmán, J.L. Nava, O. Coreño, I. Rodríguez, S. Gutiérrez, Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor, Chemosphere. 144 (2016) 2113–2120. https://doi.org/10.1016/j.chemosphere.2015.10.108.
[143] M. Drobnik, T. Latour, D. Sziwa, The elements of specific biological activity in the therapeutic waters in Polish health resorts, J. Elem. 16 (2011) 525–533. https://doi.org/10.5601/jelem.2011.16.4.02.
[144] V.F. Mena, A. Betancor-Abreu, S. González, S. Delgado, R.M. Souto, J.J. Santana, Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations, J. Environ. Manage. 246 (2019) 472–483. https://doi.org/10.1016/j.jenvman.2019.05.147.
[145] U. Tezcan Un, A.S. Koparal, U. Bakir Ogutveren, Fluoride removal from water and wastewater with a bach cylindrical electrode using electrocoagulation, Chem. Eng. J. 223 (2013) 110–115. https://doi.org/10.1016/j.cej.2013.02.126.
[146] Natural Resource Management Ministerial Council, Environment protection and Heritage Council, Australian Health Minister’s Conference, National Guidelines for Water Recycling: Managing Health and Environmental Risks, Natl. Water Qual. Manag. Strateg. (2006).
[147] Q. Cai, B.D. Turner, D. Sheng, S. Sloan, The kinetics of fluoride sorption by zeolite: Effects of cadmium, barium and manganese, J. Contam. Hydrol. 177–178 (2015) 136–147. https://doi.org/10.1016/j.jconhyd.2015.03.006.
[148] B.Y. Wang, Z.L. Chen, J. Zhu, J. Shen, Y. Han, Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process, Water Sci. Technol. 68 (2013) 134–143. https://doi.org/10.2166/wst.2013.204.
[149] Ministry of Environment (Government of Japan), National effluent standards, (n.d.). https://www.env.go.jp/en/water/wq/nes.html (accessed November 8, 2019).
[150] Ministry of Roads Transport and Development, Asian Development Bank, Initial Environmental Examination ( Final Draft ) MON : Regional Road Development and Maintenance Project ( including Proposed Loan and Administration of Grant for Additional Financing ), (2019).
[151] R. El Jaoudi, F. Mamouch, M.A. El Cadi, Y. Bousliman, Y. Cherrah, A. Bouklouze, Determination of fluoride in tap water in Morocco using a direct electrochemical method, Bull. Environ. Contam. Toxicol. 89 (2012) 390–394. https://doi.org/10.1007/s00128-012-0706-8.
[152] DFTQC, Drinking Water (Processed Water) Quality Standard, Department of Food Technology and Quality Control, Nepal, 2018.
[153] M.A. Khwaja, A. Aslam, Comparative Assessment of Pakistan National Drinking Water Quality Standards with Selected Asian Countries and World Health Organization A publication of the Sustainable Development Policy Institute (SDPI), 2018. https://doi.org/10.1080/19475705.2011.626083.
[154] World Wide Fund for Nature, National Surface Water Classification Criteria, 2007.
[155] M. Borysewicz-Lewicka, J. Opydo-Szymaczek, Fluoride in polish drinking water and the possible risk of dental fluorosis, Polish J. Environ. Stud. 25 (2016) 9–15. https://doi.org/10.15244/pjoes/60352.
[156] L. Stoica, C. Constantin, C.C.Ă. Lin, Fluorie removal from aqueous solutions by sorpton-flotation, U.P. 74 (2012).
[157] Tanzania Bureau of Standards, Narional Environmental Standards Compendium, 2005.
[158] Industrial Estate Authority of Thailand, Announcement of the Industrial Estate Authority of Thailand No. 45/2541 Re: Wastewater discharge criteria for factory situated in the industrial estate, 1998.
[159] Vietnam Environment Administration, National technical regulation on marine water quality, 2015.
[160] Vietnam Environment Administration, National technical regulation on drinking water quality, 2009. https://vanbanphapluat.co/qcvn-01-1-2018-byt-chat-luong-nuoc-sach-su-dung-cho-sinh-hoat.
[161] S.S. Waghmare, T. Arfin, Fluoride Removal from Water by various techniques : Review, 2 (2015) 560–571.
[162] J. Singh, P. Singh, A. Singh, Fluoride ions vs removal technologies: A study, Arab. J. Chem. 9 (2016) 815–824. https://doi.org/10.1016/j.arabjc.2014.06.005.
[163] S.S. Waghmare, T. Arfin, Fluoride Removal from Water By Calcium Materials: A State-Of-The-Art Review, Int. J. Innov. Res. Sci. Eng. Technol. 4 (2015) 8090–8102. https://doi.org/10.15680/IJIRSET.2015.0409013.
[164] S.S. Waghmare, T. Arfin, Fluoride Removal from Water by Aluminium Based Adsorption: A Review, J. Biol. Chem. Chron. 2 (2015) 560–571.
[165] S.S. Waghmare, T. Arfin, Fluoride Removal By Industrial , Agricultural and Biomass Wastes As Adsorbents : Review, Int. J. Adv. Res. Innov. Ideas Educ. 1 (2015) 628–653.
[166] S. Bhattacharya, Application of nanostructured materials in fluoride removal from contaminated groundwater, Eur. Water. 58 (2017) 87–93.
[167] N. Gandhi, D. Sirisha, K.B. Chandra Shekar, S. Asthana, Removal of fluoride from water and waste water by using low cost adsorbents, Int. J. ChemTech Res. 4 (2012) 1646–1653.
[168] A. Bhatnagar, E. Kumar, M. Sillanpää, Fluoride removal from water by adsorption-A review, Chem. Eng. J. 171 (2011) 811–840. https://doi.org/10.1016/j.cej.2011.05.028.
[169] M. Mohapatra, S. Anand, B.K. Mishra, D.E. Giles, P. Singh, Review of fluoride removal from drinking water, J. Environ. Manage. 91 (2009) 67–77. https://doi.org/10.1016/j.jenvman.2009.08.015.
[170] D. Thakuria, J.G. Buddharatna, Contamination and Removal of Iron and Fluoride from Groundwater by Adsorption and Filtration : A Review, Int. J. Sci. Technol. Eng. 2 (2016) 80–85.
[171] Y. Artioli, Adsorption, Ecol. Process. (2008) 60–65.
[172] W. Guan, X. Zhao, Fluoride recovery using porous calcium silicate hydrates via spontaneous Ca2+and OH-release, Sep. Purif. Technol. 165 (2016) 71–77. https://doi.org/10.1016/j.seppur.2016.03.050.
[173] R. Tovar-Gómez, M.R. Moreno-Virgen, J.A. Dena-Aguilar, V. Hernández-Montoya, Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach, Chem. Eng. J. 228 (2013) 1098–1109. https://doi.org/10.1016/j.cej.2013.05.080.
[174] X. Dou, D. Mohan, C.U. Pittman, S. Yang, Remediating fluoride from water using hydrous zirconium oxide, Chem. Eng. J. 198–199 (2012) 236–245. https://doi.org/10.1016/j.cej.2012.05.084.
[175] L.H. Velazquez-Jimenez, R.H. Hurt, J. Matos, J.R. Rangel-Mendez, Zirconium-carbon hybrid sorbent for removal of fluoride from water: Oxalic acid mediated Zr(IV) assembly and adsorption mechanism, Environ. Sci. Technol. 48 (2014) 1166–1174. https://doi.org/10.1021/es403929b.
[176] S. karmakar, J. Dechnik, C. Janiak, S. De, Aluminium fumarate metal-organic framework: A super adsorbent for fluoride from water, J. Hazard. Mater. 303 (2016) 10–20. https://doi.org/10.1016/j.jhazmat.2015.10.030.
[177] S. Roy, P. Das, S. Sengupta, S. Manna, Calcium impregnated activated charcoal : Optimization and efficiency for the treatment of fluoride containing solution in batch and fixed bed reactor, Process Saf. Environ. Prot. 109 (2017) 18–29. https://doi.org/10.1016/j.psep.2017.03.026.
[178] Z. Sun, J.S. Park, D. Kim, C.H. Shin, W. Zhang, R. Wang, P. Rao, Synthesis and Adsorption Properties of Ca-Al Layered Double Hydroxides for the Removal of Aqueous Fluoride, Water. Air. Soil Pollut. 228 (2017). https://doi.org/10.1007/s11270-016-3160-0.
[179] D. Tang, G. Zhang, Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism, Chem. Eng. J. 283 (2016) 721–729. https://doi.org/10.1016/j.cej.2015.08.019.
[180] T. Kameda, J. Oba, T. Yoshioka, Continuous treatment of boron and fluoride in aqueous solutions using a column loaded with granulated Mg-Al layered double hydroxides intercalated with nitrates, J. Water Process Eng. 8 (2015) 195–201. https://doi.org/10.1016/j.jwpe.2015.10.009.
[181] Y. He, L. Zhang, X. An, G. Wan, W. Zhu, Y. Luo, Enhanced fluoride removal from water by rare earth ( La and Ce ) modified alumina : Adsorption isotherms , kinetics , thermodynamics and mechanism, Sci. Total Environ. 688 (2019) 184–198. https://doi.org/10.1016/j.scitotenv.2019.06.175.
[182] B. Zhao, Y. Zhang, X. Dou, X. Wu, M. Yang, Granulation of Fe-Al-Ce trimetal hydroxide as a fluoride adsorbent using the extrusion method, Chem. Eng. J. 185–186 (2012) 211–218. https://doi.org/10.1016/j.cej.2012.01.085.
[183] A. Mullick, S. Neogi, Ultrasonics - Sonochemistry Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for e ff ective fl uoride adsorption from water, Ultrason. - Sonochemistry. 50 (2019) 126–137. https://doi.org/10.1016/j.ultsonch.2018.09.010.
[184] M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology, J. Saudi Chem. Soc. 19 (2015) 603–615. https://doi.org/10.1016/j.jscs.2012.03.003.
[185] A. Iriel, S.P. Bruneel, N. Schenone, A.F. Cirelli, The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic and equilibrium studies, Ecotoxicol. Environ. Saf. 149 (2018) 166–172. https://doi.org/10.1016/j.ecoenv.2017.11.016.
[186] M. Malakootian, M. Moosazadeh, N. Yousefi, A. Fatehizadeh, Fluoride removal from aqueous solution by pumice: case study on Kuhbonan water, African J. Environ. Sci. Technol. 5 (2011) 299–306. https://doi.org/10.5897/AJEST10.308.
[187] N. Chen, Z. Zhang, C. Feng, M. Li, R. Chen, N. Sugiura, Investigations on the batch and fi xed-bed column performance of fl uoride adsorption by Kanuma mud, DES. 268 (2011) 76–82. https://doi.org/10.1016/j.desal.2010.09.053.
[188] K.N. Ghimire, Effective Removal of Fluoride onto Metal Ions Loaded Orange Waste, J. Nepal Chem. Soc. 27 (2012) 61–66. https://doi.org/10.3126/jncs.v27i1.6660.
[189] M.N. Sepehr, V. Sivasankar, M. Zarrabi, M. Senthil Kumar, Surface modification of pumice enhancing its fluoride adsorption capacity: An insight into kinetic and thermodynamic studies, Chem. Eng. J. 228 (2013) 192–204. https://doi.org/10.1016/j.cej.2013.04.089.
[190] T. Akafu, A. Chimdi, K. Gomoro, Removal of Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminum Hydroxide, J. Anal. Methods Chem. 2019 (2019) 1–11. https://doi.org/https://doi.org/10.1155/2019/4831926.
[191] X. Wang, R. Song, H. Yang, Y. Shi, G. Dang, S. Yang, Fluoride adsorption on carboxylated aerobic granules containing Ce ( III ), Bioresour. Technol. 127 (2013) 106–111. https://doi.org/10.1016/j.biortech.2012.09.127.
[192] Y. Ye, J. Yang, W. Jiang, J. Kang, Y. Hu, H. Hao, Fluoride removal from water using a magnesia-pullulan composite in a continuous fi xed-bed column, J. Environ. Manage. 206 (2018) 929–937. https://doi.org/10.1016/j.jenvman.2017.11.081.
[193] N. Chen, Z. Zhang, C. Feng, N. Sugiura, M. Li, R. Chen, Fluoride removal from water by granular ceramic adsorption, J. Colloid Interface Sci. 348 (2010) 579–584. https://doi.org/10.1016/j.jcis.2010.04.048.
[194] N. Chen, Z. Zhang, C. Feng, M. Li, D. Zhu, N. Sugiura, Studies on fluoride adsorption of iron-impregnated granular ceramics from aqueous solution, Mater. Chem. Phys. 125 (2011) 293–298. https://doi.org/10.1016/j.matchemphys.2010.09.037.
[195] T. Nur, P. Loganathan, T.C. Nguyen, S. Vigneswaran, G. Singh, J. Kandasamy, Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: Solution chemistry and modeling, Chem. Eng. J. 247 (2014) 93–102. https://doi.org/10.1016/j.cej.2014.03.009.
[196] S. Heimann, A.I. Nde-Tchoupe, R. Hu, T. Licha, C. Noubactep, Investigating the suitability of Fe 0 packed-beds for water defluoridation, Chemosphere. 209 (2018) 578–587. https://doi.org/10.1016/j.chemosphere.2018.06.088.
[197] M. Mohapatra, K. Rout, P. Singh, S. Anand, S. Layek, H.C. Verma, B.K. Mishra, Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique, J. Hazard. Mater. 186 (2011) 1751–1757. https://doi.org/10.1016/j.jhazmat.2010.12.076.
[198] X. Yu, S. Tong, M. Ge, J. Zuo, Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites, Carbohydr. Polym. 92 (2013) 269–275. https://doi.org/10.1016/j.carbpol.2012.09.045.
[199] E. Bazrafshan, D. Balarak, A.H. Panahi, H. Kamani, A.H. Mahvi, Fluoride removal from aqueous solutions by cupricoxide nanoparticles, 49 (2016) 233–244.
[200] A. Ghosh, S. Chakrabarti, K. Biswas, U.C. Ghosh, Column performances on fluoride removal by agglomerated Ce(IV)-Zr(IV) mixed oxide nanoparticles packed fixed-beds, J. Environ. Chem. Eng. 3 (2015) 653–661. https://doi.org/10.1016/j.jece.2015.02.001.
[201] X. Xu, Q. Li, H. Cui, J. Pang, H. An, W. Wang, Column-mode fluoride removal from aqueous solution by magnesia-loaded fly ash cenospheres, 3330 (2012). https://doi.org/10.1080/09593330.2011.630424.
[202] A.E. Yilmaz, B.A. Fil, S. Bayar, Z. Karcioglu Karakas, A new adsorbent for fluoride removal: The utilization of sludge waste from electrocoagulation as adsorbent, Glob. Nest J. 17 (2015) 186–197.
[203] Y. Li, S. Yang, Q. Jiang, J. Fang, W. Wang, Y. Wang, The adsorptive removal of fluoride from aqueous solution by modified sludge: Optimization using response surface methodology, Int. J. Environ. Res. Public Health. 15 (2018). https://doi.org/10.3390/ijerph15040826.
[204] H.A. Sanchez-Sanchez, R. Cortes-Martinez, R. Alfaro-Cuevas-Villanueva, Fluoride Removal from Aqueous Solutions by Mechanically Modified Guava Seeds, Int. J. Sci. Basic Appl. Res. 11 (2013) 159–172.
[205] S. Dwivedi, P. Mondal, C. Balomajumder, Bioadsorption of Fluoride by Ficusreligiosa ( Peepal Leaf Powder ): Optimization of process Parameters and Equilibrium study, 4 (2014) 52–60.
[206] N. Gandhi, D. Sirisha, K.B.C. Sekhar, Adsorption of Fluoride ( F - ) from Aqueous Solution by Using Pineapple ( Ananas comosus ) Peel and Orange ( Citrus sinensis ) Peel Powders, Int. J. Bioremediation Biodegrad. 4 (2016) 55–67. https://doi.org/10.12691/ijebb-4-2-4.
[207] A.H.B.A. Bakar, Y.S. Koay, Y.C. Ching, L.C. Abdullah, T.S.Y. Choong, M. Alkhatib, M.N. Mobarekeh, N.A.M. Zahri, Removal of fluoride using quaternized palm kernel shell as adsorbents: Equilibrium isotherms and kinetics studies, BioResources. 11 (2016) 4485–4511. https://doi.org/10.15376/biores.11.2.4485-4511.
[208] R. Song, S. Yang, H. Xu, Z. Wang, Y. Chen, Y. Wang, Adsorption behavior and mechanism for the uptake of fluoride ions by reed residues, Int. J. Environ. Res. Public Health. 15 (2018). https://doi.org/10.3390/ijerph15010101.
[209] V. Sivasankar, T. Ramachandramoorthy, A. Chandramohan, Fluoride removal from water using activated and MnO2-coated Tamarind Fruit (Tamarindus indica) shell: Batch and column studies, J. Hazard. Mater. 177 (2010) 719–729. https://doi.org/10.1016/j.jhazmat.2009.12.091.
[210] G. Alagumuthu, V. Veeraputhiran, R. Venkataraman, Fluoride sorption using cynodon dactylon - Based activated carbon, Hem. Ind. 65 (2011) 23–35. https://doi.org/10.2298/HEMIND100712052A.
[211] F. Ogata, H. Tominaga, H. Yabutani, N. Kawasaki, Removal of Fluoride Ions from Water by Adsorption onto Carbonaceous Materials Produced from Coffee Grounds, J. Oleo Sci. 60 (2011) 619–625. https://doi.org/10.5650/jos.60.619.
[212] M. Ravanipour, R. Kafaei, M. Keshtkar, S. Tajalli, N. Mirzaei, B. Ramavandi, Fluoride ion adsorption onto palm stone: Optimization through response surface methodology, isotherm, and adsorbent characteristics data, Data Br. 12 (2017) 471–479. https://doi.org/10.1016/j.dib.2017.04.030.
[213] E.W. Yihunu, H. Yu, W. Junhe, Z. Kai, Z.L. Teffera, B. Weldegebrial, M. Limin, A comparative study on defluoridation capabilities of biosorbents : Isotherm , kinetics , thermodynamics , cost estimation and regeneration study, 25 (2020) 384–392.
[214] N.A. Medellin-Castillo, R. Leyva-Ramos, E. Padilla-Ortega, R.O. Perez, J. V. Flores-Cano, M.S. Berber-Mendoza, Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions, J. Ind. Eng. Chem. 20 (2014) 4014–4021. https://doi.org/10.1016/j.jiec.2013.12.105.
[215] M. Gourouza, I. Natatou, A. Boos, Elimination of fluoride ions from an aqueous solution with charred beef shoulder blade bones, J. Mater. Environ. Sci. 5 (2014) 416–425.
[216] J.G. Mcevoy, D.A. Bilodeau, W. Cui, Z. Zhang, Visible-light-driven inactivation of escherichia coli k-12 using an ag/agcl-activated carbon composite photocatalyst, J. Photochem. Photobiol. A Chem. 267 (2013) 25–34. https://doi.org/10.1016/j.jphotochem.2013.04.026.
[217] L.A. Ramírez-Montoya, V. Hernández-Montoya, A. Bonilla-Petriciolet, M.A. Montes-Morán, R. Tovar-Gómez, M.R. Moreno-Virgen, Preparation , characterization and analyses of carbons with natural and induced calcium compounds for the adsorption of fluoride, J. Anal. Appl. Pyrolysis. 105 (2014) 75–82. https://doi.org/10.1016/j.jaap.2013.10.005.
[218] S.M. Kariuki, M.S. Ngari, W.J. Mavura, M.S. Ollengo, P.O. Ongoma, Effect of Essential Mineral Ions from Aqueous Media on Adsorption of Fluoride by Bone Char, IOSR J. Environ. Sci. Ver. II. 9 (2015) 2319–2399. https://doi.org/10.9790/2402-09520917.
[219] N.K. Mondal, R. Bhaumik, J.K. Datta, Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water, Alexandria Eng. J. 54 (2015) 1273–1284. https://doi.org/10.1016/j.aej.2015.08.006.
[220] N. Habibi, P. Rouhi, B. Ramavandi, Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data, Data Br. 13 (2017) 749–754. https://doi.org/10.1016/j.dib.2017.07.010.
[221] S. Rajkumar, S. Murugesh, V. Sivasankar, A. Darchen, T.A.M. Msagati, T. Chaabane, Low-cost fluoride adsorbents prepared from a renewable biowaste: Syntheses, characterization and modeling studies, Arab. J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.06.028.
[222] EPA, National Primary Drinking Water Regulations; Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring AGENCY:, Fed. Regist. 75 (2001) 56928–56935. https://doi.org/10.1016/0196-335x(80)90058-8.
[223] S. Meenakshi, N. Viswanathan, Identification of selective ion-exchange resin for fluoride sorption, J. Colloid Interface Sci. 308 (2007) 438–450. https://doi.org/10.1016/j.jcis.2006.12.032.
[224] Q. Li, B. Wang, W. Li, C. Wang, Q. Zhou, C. Shuang, A. Li, Performance evaluation of magnetic anion exchange resin removing fluoride, J. Chem. Technol. Biotechnol. 91 (2016) 1747–1754. https://doi.org/10.1002/jctb.4764.
[225] G.J. Millar, S.J. Couperthwaite, D.B. Wellner, D.C. Macfarlane, S.A. Dalzell, Removal of fluoride ions from solution by chelating resin with imino-diacetate functionality, J. Water Process Eng. 20 (2017) 113–122. https://doi.org/10.1016/j.jwpe.2017.10.004.
[226] S. Padungthon, J. Li, M. German, A.K. SenGupta, Hybrid Anion Exchanger with Dispersed Zirconium Oxide Nanoparticles: A Durable and Reusable Fluoride-Selective Sorbent, Environ. Eng. Sci. 31 (2014) 360–372. https://doi.org/10.1089/ees.2013.0412.
[227] J. Zhang, Y. Kong, Y. Yang, N. Chen, C. Feng, X. Huang, C. Yu, Fast Capture of Fluoride by Anion-Exchange Zirconium−Graphene Hybrid Adsorbent, (2019). https://doi.org/10.1021/acs.langmuir.9b00589.
[228] H. Lu, J. Wang, T. Wang, N. Wang, Y. Bao, H. Hao, Crystallization techniques in wastewater treatment: An overview of applications, Chemosphere. 173 (2017) 474–484. https://doi.org/10.1016/j.chemosphere.2017.01.070.
[229] T. Guo, J. Englehardt, T. Wu, Review of cost versus scale : water and wastewater treatment and reuse processes, Water Sci. Technol. 69 (2014) 223–234. https://doi.org/10.2166/wst.2013.734.
[230] M. Vithanage, P. Bhattacharya, Fluoride in the environment : sources , distribution and defluoridation, (2015). https://doi.org/10.1007/s10311-015-0496-4.
[231] L. Wang, Y. Zhang, N. Sun, W. Sun, Y. Hu, H. Tang, Precipitation Methods Using Calcium-Containing Ores for Fluoride Removal in Wastewater, (2019) 30–33.
[232] S. Ayoob, A.K. Gupta, P.B. Bhakat, V.T. Bhat, Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules, Chem. Eng. J. 140 (2008) 6–14. https://doi.org/10.1016/j.cej.2007.08.029.
[233] M.T. Lee, C.W. Li, J.C. Liu, Recovery of fluoride as perovskite-like minerals from industrial wastewater, Sep. Purif. Technol. 156 (2015) 1057–1063. https://doi.org/10.1016/j.seppur.2015.09.058.
[234] M. Kumar, M.N. Babu, T.R. Mankhand, B.D. Pandey, Precipitation of sodium silicofluoride (Na2SiF6 ) and cryolite (Na3AlF6 ) from HF/HCl leach liquors of alumino-silicates, Hydrometallurgy. 104 (2010) 304–307. https://doi.org/10.1016/j.hydromet.2010.05.014.
[235] A. Takdastan, S.E. Tabar, A. Islam, M.H. Bazafkan, A.K. Naisi, The Effect of the Electrode in Fluoride Removal from Drinking Water by Electro Coagulation Process, (2015).
[236] K. Govindan, M. Raja, S. Uma Maheshwari, M. Noel, Y. Oren, Comparison and understanding of fluoride removal mechanism in Ca2+, Mg2+ and Al3+ ion assisted electrocoagulation process using Fe and Al electrodes, J. Environ. Chem. Eng. 3 (2015) 1784–1793. https://doi.org/10.1016/j.jece.2015.06.014.
[237] M.M. Bello, A.A. Abdul Raman, M. Purushothaman, Applications of fluidized bed reactors in wastewater treatment – A review of the major design and operational parameters, J. Clean. Prod. 141 (2017) 1492–1514. https://doi.org/10.1016/j.jclepro.2016.09.148.
[238] R. Aldaco, A. Garea, A. Irabien, Fluoride reuse in aluminum trifluoride manufacture: Sustainability criteria, AIChE Annu. Meet. Conf. Proc. (2005).
[239] G. Zeng, B. Ling, Z. Li, S. Luo, X. Sui, Q. Guan, Fluorine removal and calcium fluoride recovery from rare-earth smelting wastewater using fluidized bed crystallization process, J. Hazard. Mater. 373 (2019) 313–320. https://doi.org/10.1016/j.jhazmat.2019.03.050.
[240] L.P. Ramteke, A.C. Sahayam, A. Ghosh, U. Rambabu, M.R.P. Reddy, K.M. Popat, B. Rebary, D. Kubavat, K. V. Marathe, P.K. Ghosh, Study of fluoride content in some commercial phosphate fertilizers, J. Fluor. Chem. 210 (2018) 149–155. https://doi.org/10.1016/j.jfluchem.2018.03.018.
[241] M.M. Damtie, Y.C. Woo, B. Kim, R.H. Hailemariam, K.-D. Park, H.K. Shon, C. Park, J.-S. Choi, Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review, J. Environ. Manage. 251 (2019) 109524. https://doi.org/10.1016/j.jenvman.2019.109524.
[242] S. Chakrabortty, M. Roy, P. Pal, Removal of fluoride from contaminated groundwater by cross flow nanofiltration: Transport modeling and economic evaluation, Desalination. 313 (2013) 115–124. https://doi.org/10.1016/j.desal.2012.12.021.
[243] R. Simons, Trace element removal from ash dam waters by nanofiltration and diffusion dialysis, Desalination. 89 (1993) 325–341. https://doi.org/10.1016/0011-9164(93)80145-D.
[244] I. Bejaoui, A. Mnif, B. Hamrouni, Influence of operating conditions on the retention of fluoride from water by nanofiltration, Desalin. Water Treat. 29 (2011) 39–46. https://doi.org/10.5004/dwt.2011.1836.
[245] I. Bejaoui, A. Mnif, B. Hamrouni, Performance of Reverse Osmosis and Nanofiltration in the Removal of Fluoride from Model Water and Metal Packaging Industrial Effluent, Sep. Sci. Technol. 49 (2014) 1135–1145. https://doi.org/10.1080/01496395.2013.878956.
[246] D. Dolar, K. Košutić, B. Vučić, RO/NF treatment of wastewater from fertilizer factory - removal of fluoride and phosphate, Desalination. 265 (2011) 237–241. https://doi.org/10.1016/j.desal.2010.07.057.
[247] N. Yousefi, A. Fatehizedeh, K. Ghadiri, N. Mirzaei, S.D. Ashrafi, A.H. Mahvi, Application of nanofilter in removal of phosphate, fluoride and nitrite from groundwater, Desalin. Water Treat. 57 (2016) 11782–11788. https://doi.org/10.1080/19443994.2015.1044914.
[248] J. Shen, B.S. Richards, A.I. Schäfer, Renewable energy powered membrane technology: Case study of St. Dorcas borehole in Tanzania demonstrating fluoride removal via nanofiltration/reverse osmosis, Sep. Purif. Technol. 170 (2016) 445–452. https://doi.org/10.1016/j.seppur.2016.06.042.
[249] C. Peng, H. Liu, H. Qiao, J. Luo, X. Liu, R. Hou, X. Wan, H. Cai, Evaluation the Feasibility of Short‐Term Electrodialysis for Separating Naturally Occurring Fluoride from Instant Brick Tea Infusion, J. Sci. Food Agric. (2019). https://doi.org/10.1002/jsfa.10011.
[250] F.D. Belkada, O. Kitous, N. Drouiche, S. Aoudjb, O. Bouchelaghemb, N. Abdia, H. Griba, N. Mameria, Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater, Sep. Purif. Technol. 204 (2018) 108–115. https://doi.org/10.1016/j.seppur.2018.04.068.
[251] Z. Amor, S. Malki, M. Taky, B. Bariou, N. Mameri, A. Elmidaoui, Optimization of fluoride removal from brackish water by electrodialysis, Desalination. 120 (1998) 263–271. https://doi.org/10.1016/S0011-9164(98)00223-9.
[252] V.A. Khue, L.T. Guo, X.X. Jun, Y.X. Lin, P.R. Hao, Removal of copper and fluoride from wastewater by the coupling of electrocoagulation , fluidized bed and micro-electrolysis ( EC / FB / ME ) process, 2 (2014) 86–91. https://doi.org/10.11648/j.ajche.20140206.13.
[253] P. Melidis, Fluoride Removal from Aluminium Finishing Wastewater by Hydroxyapatite, Environ. Process. 2 (2015) 205–213. https://doi.org/10.1007/s40710-014-0056-0.
[254] L. Xu, X. Gao, Z. Li, C. Gao, Removal of fluoride by nature diatomite from high-fluorine water: An appropriate pretreatment for nanofiltration process, Desalination. 369 (2015) 97–104. https://doi.org/10.1016/j.desal.2015.04.033.
[255] N.C. Lu, J.C. Liu, Removal of phosphate and fluoride from wastewater by a hybrid precipitation-microfiltration process, Sep. Purif. Technol. 74 (2010) 329–335. https://doi.org/10.1016/j.seppur.2010.06.023.
[256] S.A.A.A.N. Almuktar, S.N. Abed, M. Scholz, Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review, Environ. Sci. Pollut. Res. 25 (2018) 23595–23623. https://doi.org/10.1007/s11356-018-2629-3.
[257] P.S. Parikh, S.K. Mazumder, Capacity of Azolla pinnata var . imbricata to Absorb Heavy Metals and Fluorides from the Wastewater of Oil and Petroleum Refining Industry at Vadodara, Int. J. Appl. Pract. Res. Rev. II (2015) 37–43.
[258] D.H. Kang, D. Tsao, F. Wang-Cahill, S. Rock, A.P. Schwab, M.K. Banks, Assessment of landfill leachate volume and concentrations of cyanide and fluoride during phytoremediation, Bioremediat. J. 12 (2008) 32–45. https://doi.org/10.1080/10889860701866297.
[259] M. Baunthiyal, V. Sharma, Phytoremediation of fluoride contaminated water and soil: a search for fluoride hyperaccumulators., Int. J. Agric. Technol. 8 (2012) 1965–1978. http://www.ijat-aatsea.com/pdf/v8_n6_12_November/9_IJAT_2012_8(6)_Mamta%25 20Baunthiyal _2_June_2012_Biotechnology_ .pdf ER.
[260] S. Chouhan, U. Tuteja, S.J. Flora, Isolation, identification and characterization of fluoride resistant bacteria: possible role in bioremediation., Prikl. Biokhim. Mikrobiol. 48 (2012) 51–58. https://doi.org/10.1134/S0003683812010036.
[261] S. Sharma, D. Upadhyay, S. Bhupendra, D. Shrivastava, N.M. Kulshreshtha, Defluoridation of water using autochthonous bacterial isolates, Environ. Monit. Assess. (2019).
[262] D. Harikishore Kumar Reddy, K. Vijayaraghavan, J.A. Kim, Y.S. Yun, Valorisation of post-sorption materials: Opportunities, strategies, and challenges, Adv. Colloid Interface Sci. 242 (2017) 35–58. https://doi.org/10.1016/j.cis.2016.12.002.
[263] V.K. Jadhao, S. Kodape, K. Junghare, Optimization of electrocoagulation process for fluoride removal : a blending approach using gypsum plaster rich wastewater, Sustain. Environ. Res. (2019) 1–9. https://doi.org/http;//doi.org/10.1186/s42834-019-0002-y.
[264] S. Lahnid, M. Tahaikt, K. Elaroui, I. Idrissi, M. Hafsi, I. Laaziz, Z. Amor, F. Tiyal, A. Elmidaoui, Economic evaluation of fluoride removal by electrodialysis, Desalination. 230 (2008) 213–219. https://doi.org/10.1016/j.desal.2007.11.027.
[265] P. Cañizares, F. Martínez, C. Jiménez, C. Sáez, M.A. Rodrigo, Technical and economic comparison of conventional and electrochemical coagulation processes, J. Chem. Technol. Biotechnol. 84 (2009) 702–710. https://doi.org/10.1002/jctb.2102.
[266] J. Hardwick, E. Hardwick, Energy footprint and operating costs, a comparison of ion exchange resin and activated carbon in the application of sugar decolourisation, Process Africa. (2017) 469–473.
[267] Aqion, The Open Carbonate System, (n.d.). https://www.aqion.de/site/161#:~:text=In an open carbonate system,CO2 of the atmosphere.&text=In contrast to the closed,system increases with increasing pH. (accessed October 5, 2020).
[268] P. Xiao-yu, W. Yun-yan, C. Li-yuan, S.H.U. Yu-de, Thermodynamic equilibrium of CaSO4 -Ca(OH)2 -H2O system, 6326 (2008) 2007–2010. https://doi.org/10.1016/S1003-6326(08)60260-5.
[269] R.I. Dick, P.A. Vesilind, R.I. Dick, P.A. Vesilind, THE SLUDGE VOLUME INDEX ? WHAT IS IT ?, 41 (1969) 1285–1291.
[270] APHA, 2710 Test on Sludges, United States, 2012.
[271] APHA, 2540 D. Total Suspended Solids Dried at 103–105°C, 1999.
[272] J.J. Classen, W.J. Chandler, R.S. Huie, J.A. Osborne, A Centrifuge-Based Procedure for Suspended Solids Measurements in Lagoon Sludge, Am. Soc. Agric. Biol. Eng. 56 (2013) 747–752. https://doi.org/10.13031/2013.42662.
[273] I. Al-yaseri, S. Morgan, W. Retzlaff, Using Turbidity to Determine Total Suspended Solids in Storm-Water Runoff from Green Roofs, 139 (2013) 822–828. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000685.
[274] S. Polat, P. Sayan, Application of response surface methodology with a Box – Behnken design for struvite precipitation, Adv. Powder Technol. 30 (2019) 2396–2407. https://doi.org/10.1016/j.apt.2019.07.022.
[275] N.R. Draper, T.P. Davis, L. Pozueta, D.M. Grove, T.P. Davis, Isolation of Degrees of Freedom for Box-Behnken Designs, 36 (1994) 283–291.
[276] L. Wang, C. Wang, Y. Yu, X. Huang, Z. Long, Y. Hou, D. Cui, Recovery of fluorine from bastnasite as synthetic cryolite by-product, J. Hazard. Mater. 209–210 (2012) 77–83. https://doi.org/10.1016/j.jhazmat.2011.12.069.
[277] R.J. Wakeman, SEDIMENTATION, (2011). https://doi.org/DOI: 10.1615/AtoZ.s.sedimentation.
[278] C.T. Haan, J.C. Hayes, D. Hydrology, S.S. Catch-, Sediment Properties and Transport, (1994).
[279] D.J. Tobler, J. Diego, R. Blanco, H.O. Sørensen, S.L.S. Stipp, K. Dideriksen, Effect of pH on Amorphous Calcium Carbonate Structure and Transformation, (2016). https://doi.org/10.1021/acs.cgd.6b00630.
[280] C. Fialips, S. Petit, A. Decarreau, D. Beaufort, Influence of Synthesis pH on Kaolinite “Crystallinity” and Surface Properties, (2000). https://doi.org/10.1346/CCMN.2000.0480203.
[281] C. Rodriguez-navarro, A. Burgos-cara, F. Di Lorenzo, E. Ruiz-agudo, K. Elert, Nonclassical Crystallization of Calcium Hydroxide via Amorphous Precursors and the Role of Additives, (2020). https://doi.org/10.1021/acs.cgd.0c00241.
[282] R.T. Haslam, G. Calingaert, C.M. Taylor, The hydrates of lime, 46 (1923) 308–311. https://doi.org/10.1021/ja01667a006.
[283] F. Häusler, H. Schmidt, D. Freyer, Calcium Hydroxide Chlorides : The Ternary System Phase Stoichiometry and Crystal Structure, (2019) 723–731. https://doi.org/10.1002/zaac.201900051.
[284] W. Gai, Z. Deng, Y. Shi, Fluoride removal from water using high-activity aluminum hydroxide prepared by the ultrasonic, RSC. 5 (2015) 84223–84231. https://doi.org/10.1039/c5ra14706a.
[285] C.F.Z. Lacson, M.-C. Lu, Y.-H. Huang, Chemical precipitation at extreme fluoride concentration and potential recovery of CaF2 particles by fluidized-bed homogenous crystallization process, Chem. Eng. J. 415 (2021) 128917. https://doi.org/10.1016/j.cej.2021.128917.
[286] K. Tsuchiya, S. Fuchida, C. Tokoro, Experimental study and surface complexation modeling of fluoride removal by magnesium hydroxide in adsorption and coprecipitation processes, J. Environ. Chem. Eng. 8 (2020) 104514. https://doi.org/10.1016/j.jece.2020.104514.
[287] N. Al-Darwish, T.M. Abu-Shahar, Kinetics of fluoride adsorption onto native and Mg (OH)2‑amended limestone, Appl. Water Sci. (2021) 1–13. https://doi.org/10.1007/s13201-021-01358-9.
[288] J. Zhang, N. Chen, M. Li, P. Su, C. Feng, Fluoride removal from aqueous solution by Zirconium-Chitosan/ Graphene Oxide Membrane, React. Funct. Polym. (2017). https://doi.org/10.1016/j.reactfunctpolym.2017.03.008.
[289] Y. Gan, X. Wang, L. Zhang, B. Wu, G. Zhang, S. Zhang, Coagulation removal of fluoride by zirconium tetrachloride : Performance evaluation and mechanism analysis, Chemosphere. 218 (2019) 860–868. https://doi.org/10.1016/j.chemosphere.2018.11.192.
[290] W. Stumm, J.J. Morgan, Aquatic Chemistry: chemical equilibria and rates in Natural Water, Third edit, Wiley and Sons Inc., New York N.Y., 1996.
[291] P.S. Caddarao, S. Garcia-segura, F.C. Ballesteros, Y.H. Huang, M.C. Lu, Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate . Influence of operational variables and electrolytes on brushite homogeneous crystallization, J. Taiwan Inst. Chem. Eng. 83 (2018) 124–132. https://doi.org/10.1016/j.jtice.2017.12.009.
[292] C. Wei, Y. Zhu, F. Yang, J. Li, Z. Zhu, H. Zhu, Dissolution and solubility of hydroxylapatite and fluorapatite at 25 o C at different pH, 17 (2013) 1–5.
[293] M. Kosmulski, pH-dependent surface charging and points of zero charge . IV . Update and new approach, 337 (2009) 439–448. https://doi.org/10.1016/j.jcis.2009.04.072.
[294] N.M. Ippolito, G. Maffei, F. Medici, L. Piga, Adsorption and regeneration of fluoride ion on a high alumina content bauxite, Chem. Eng. Trans. 47 (2016) 217–222. https://doi.org/10.3303/CET1647037.
[295] X. Zhao, Y. Li, K.C. Carroll, F. Li, L. Qiu, Z. Huo, Mesoporous goethite for rapid and high-capacity fluoride removal from drinking water, J. Environ. Chem. Eng. 9 (2021) 105278. https://doi.org/10.1016/j.jece.2021.105278.
[296] F.K. Crundwell, On the Mechanism of the Dissolution of Quartz and Silica in Aqueous Solutions, (2017). https://doi.org/10.1021/acsomega.7b00019.
[297] R.M. Briones, M. Daniel, G. De Luna, M. Lu, R. Mañez, M. Daniel, G. De Luna, M. Lu, Optimization of acetaminophen degradation by fluidized-bed Fenton process Optimization of acetaminophen degradation by fluidized-bed Fenton process, (2012) 37–41.
[298] P. Sanciolo, L. Zou, S. Gray, G. Leslie, D. Stevens, Accelerated seeded precipitation pre-treatment of municipal wastewater to reduce scaling, Chemosphere. 72 (2008) 243–249. https://doi.org/10.1016/j.chemosphere.2008.01.045.
[299] P. Sanciolo, S. Gray, Effect of solution composition on seeded precipitation of calcium for high recovery RO of magnesium-bearing wastewater , surface water or groundwater, Sep. Purif. Technol. 172 (2017) 433–441. https://doi.org/10.1016/j.seppur.2016.08.044.
[300] M.H. Derkani, A.J. Fletcher, M. Fedorov, W. Abdallah, B. Sauerer, J. Anderson, Z.J. Zhang, Mechanisms of Surface Charge Modification of Carbonates in Aqueous Electrolyte Solutions, (2019). https://doi.org/10.3390/colloids3040062.
[301] C.F.Z. Lacson, M. Lu, Y. Huang, Fluoride-rich wastewater treatment by ballast-assisted precipitation with the selection of precipitants and discarded or recovered materials as ballast, J. Environ. Chem. Eng. 9 (2021) 105713. https://doi.org/10.1016/j.jece.2021.105713.
[302] P.S. Caddarao, S. Garcia-segura, F.C. Ballesteros, Y. Huang, M. Lu, Phosphorous recovery by means of fluidize d b e d homogeneous crystallization of calcium phosphate . Influence of operational variables and electrolytes on brushite homogeneous crystallization, J. Taiwan Inst. Chem. Eng. 83 (2018) 124–132. https://doi.org/10.1016/j.jtice.2017.12.009.
[303] S. Verma, M.N. Nadagouda, Graphene-Based Composites for Phosphate Removal, (2021). https://doi.org/10.1021/acsomega.0c05819.
[304] R.R. Pahunang, F.C. Ballesteros, M. Daniel, G. De Luna, A.C. Vilando, M.C. Lu, Optimum recovery of phosphate from simulated wastewater by unseeded fluidized-bed crystallization process, Sep. Purif. Technol. 212 (2019) 783–790. https://doi.org/10.1016/j.seppur.2018.11.087.
[305] V. Le, C. Vu, Y. Shih, X. Bui, C. Liao, Phosphorus and potassium recovery from human urine using a fl uidized bed homogeneous crystallization ( FBHC ) process, Chem. Eng. J. 384 (2020) 123282. https://doi.org/10.1016/j.cej.2019.123282.
[306] S. Garcia-Segura, L.M. Bellotindos, Y.H. Huang, E. Brillas, M.C. Lu, Fluidized-bed Fenton process as alternative wastewater treatment technology-A review, J. Taiwan Inst. Chem. Eng. 67 (2016) 211–225. https://doi.org/10.1016/j.jtice.2016.07.021.
[307] R. Priambodo, Y. Shih, Y. Huang, Phosphorus recovery as ferrous phosphate (vivianite) from wastewater produced in manufacture of thin film transistor-liquid crystal displays (TFT-LCD) by a fluidized bed crystallizer (FBC), (2017) 40819–40828. https://doi.org/10.1039/c7ra06308c.
[308] V. Le, C. Vu, Y. Shih, X. Bui, C. Liao, Phosphorus and potassium recovery from human urine using a fl uidized bed homogeneous crystallization ( FBHC ) process, Chem. Eng. J. 384 (2020) 123282. https://doi.org/10.1016/j.cej.2019.123282.
[309] C. Chen, Y. Shih, Y. Huang, Remediation of lead ( Pb ( II )) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization ( FBHC ) system, Chem. Eng. J. 279 (2015) 120–128. https://doi.org/10.1016/j.cej.2015.05.013.
[310] R. Aldaco, A. Garea, A. Irabien, Modeling of particle growth : Application to water treatment in a fluidized bed reactor, 134 (2007) 66–71. https://doi.org/10.1016/j.cej.2007.03.068.
[311] M. Daniel, G. De Luna, L.M. Bellotindos, R.N. Asiao, M. Lu, Hydrometallurgy Removal and recovery of lead in a fl uidized-bed reactor by crystallization process, Hydrometallurgy. 155 (2015) 6–12. https://doi.org/10.1016/j.hydromet.2015.03.009.
[312] C.C. Su, L.M. Bellotindos, A.T. Chang, M.C. Lu, Degradation of acetaminophen in an aerated Fenton reactor, J. Taiwan Inst. Chem. Eng. 44 (2013). https://doi.org/10.1016/j.jtice.2012.11.009.
[313] D. Ma, L. Yang, Z. Sheng, Y. Chen, Photocatalytic degradation mechanism of benzene over ZnWO 4 : Revealing the synergistic e ff ects of Na-doping and oxygen vacancies, Chem. Eng. J. 405 (2021) 126538. https://doi.org/10.1016/j.cej.2020.126538.
[314] N.N.N. Mahasti, Y. Shih, Y. Huang, Journal of the Taiwan Institute of Chemical Engineers Removal of iron as oxyhydroxide ( FeOOH ) from aqueous solution by fluidized-bed homogeneous crystallization, J. Taiwan Inst. Chem. Eng. 96 (2019) 496–502. https://doi.org/10.1016/j.jtice.2018.12.022.
[315] K. Hosni, E. Srasra, Evaluation of fluoride removal from water by hydrotalcite-like compounds synthesized from the kaolinic clay, J. Water Chem. Technol. 33 (2011) 164–176. https://doi.org/10.3103/S1063455X11030064.
[316] T.K. Rout, R. Verma, R. V. Dennis, S. Banerjee, Study the Removal of Fluoride from Aqueous Medium by Using Nano-Composites, J. Encapsulation Adsorpt. Sci. 05 (2015) 38–52. https://doi.org/10.4236/jeas.2015.51004.
[317] K. Pandi, N. Viswanathan, Synthesis and applications of eco-magnetic nano-hydroxyapatite chitosan composite for enhanced fluoride sorption, Carbohydr. Polym. 134 (2015) 732–739. https://doi.org/10.1016/j.carbpol.2015.08.003.
[318] M.H. Dehghani, M. Faraji, A. Mohammadi, H. Kamani, Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: Isotherm, kinetic and thermodynamic studies, Korean J. Chem. Eng. 34 (2017) 454–462. https://doi.org/10.1007/s11814-016-0274-4.
[319] A. Dhillon, Sapna, B.L. Choudhary, D. Kumar, S. Prasad, Excellent disinfection and fluoride removal using bifunctional nanocomposite, Chem. Eng. J. 337 (2018) 193–200. https://doi.org/10.1016/j.cej.2017.12.030.
[320] K.A. Emmanuel, A. Veerabhadraraob, T. V. Nagalakshmic, M. Gurupratap-Reddy, P.P. Sureshbabue, Diwakarb, C. Sureshbabu, ADepartment, Factors influencing the removal of fluoride from aqueous solution by Pithacelobium dulce Carbon, Der Pharma Chem. 7 (2015) 225–236.
[321] S.E. Ebrahim, Removal of Fluoride Ions from Wastewater Using Green and Blue- green Algae Biomass in a Fluidized Bed System, J. Eng. 22 (2016) 111–127.
[322] N. Khoshnamvand, E. Bazrafshan, B. Kamarei, Fluoride Removal from Aqueous Solutions by NaOH-Modified Eucalyptus Leaves, J. Environ. Heal. Sustain. Dev. 3 (2018).
[323] D.B. Bhatt, P.R. Bhatt, H.H. Prasad, K.M. Popat, P.S. Anand, Removal of fluoride ion from aqueous bodies by aluminium complexed amino phosphonic acid type resins, Indian J. Chem. Technol. 11 (2004) 299–303.
[324] S.K. Nath, R.K. Dutta, Enhancement of Limestone Defluoridation of Water by Acetic and Citric Acids in Fixed Bed Reactor, 38 (2010) 614–622. https://doi.org/10.1002/clen.200900209.
[325] S. Manna, P. Saha, D. Roy, B. Adhikari, P. Das, Fixed bed column study for water de fl uoridation using neem oil-phenolic resin treated plant bio-sorbent, J. Environ. Manage. 212 (2018) 424–432. https://doi.org/10.1016/j.jenvman.2018.02.037.
[326] K. Jiang, K.G. Zhou, Y.C. Yang, H. Du, Growth kinetics of calcium fluoride at high supersaturation in a fluidized bed reactor, Environ. Technol. (United Kingdom). 35 (2014) 82–88. https://doi.org/10.1080/09593330.2013.811542.
[327] J. Hoinkis, S. Valero-Freitag, M.P. Caporgno, C. Pätzold, Removal of nitrate and fluoride by nanofiltration - A comparative study, Desalin. Water Treat. 30 (2011) 278–288. https://doi.org/10.5004/dwt.2011.2103.
[328] A. Ben Nasr, C. Charcosset, R. Ben Amar, K. Walha, Defluoridation of water by nanofiltration, J. Fluor. Chem. 150 (2013) 92–97. https://doi.org/10.1016/j.jfluchem.2013.01.021.
[329] M. Pontie, H. Dach, A. Lhassani, C.K. Diawara, Water defluoridation using nanofiltration vs. reverse osmosis: The first world unit, Thiadiaye (Senegal), Desalin. Water Treat. 51 (2013) 164–168. https://doi.org/10.1080/19443994.2012.704715.
[330] B. Xi, X. Wang, W. Liu, X. Xia, D. Li, L. He, H. Wang, W. Sun, T. Yang, W. Tao, Fluoride and Arsenic Removal by Nanofiltration Technology from Groundwater in Rural Areas of China: Performances with Membrane Optimization, Sep. Sci. Technol. 49 (2014) 2642–2649. https://doi.org/10.1080/01496395.2014.939761.
[331] S. V. Jadhav, K. V. Marathe, V.K. Rathod, A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach, J. Water Process Eng. 13 (2016) 153–167. https://doi.org/10.1016/j.jwpe.2016.04.008.
[332] M.S. Gaikwad, C. Balomajumder, Simultaneous rejection of chromium(VI) and fluoride [Cr(VI) and F] by nanofiltration: Membranes characterizations and estimations of membrane transport parameters by CFSK model, J. Environ. Chem. Eng. 5 (2017) 45–53. https://doi.org/10.1016/j.jece.2016.11.018.
[333] I. Owusu-Agyeman, A. Jeihanipour, T. Luxbacher, A.I. Schäfer, Implications of humic acid, inorganic carbon and speciation on fluoride retention mechanisms in nanofiltration and reverse osmosis, J. Memb. Sci. 528 (2017) 82–94. https://doi.org/10.1016/j.memsci.2016.12.043.
[334] C.R. Gally, T. Benvenuti, C.D.M. Da Trindade, M.A.S. Rodrigues, J. Zoppas-Ferreira, V. Pérez-Herranz, A.M. Bernardes, Electrodialysis for the tertiary treatment of municipal wastewater: Efficiency of ion removal and ageing of ion exchange membranes, J. Environ. Chem. Eng. 6 (2018) 5855–5869. https://doi.org/10.1016/j.jece.2018.07.052.
校內:2026-07-02公開