簡易檢索 / 詳目顯示

研究生: 張雅雯
Chang, Ya-Wen
論文名稱: Mosapride作為大白鼠體內CYP3A活性探針性試藥之可行性
Feasibility of mosapride as an in vivo probe of CYP3A activity in rats
指導教授: 鄭靜玲
Cheng, Ching-Ling
周辰熹
Chou, Chen-Hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 102
中文關鍵詞: 體內探針性試藥有限採樣法mosapride細胞色素3A
外文關鍵詞: in vivo probe, limited sampling strategy, Cytochrome P450 3A, mosapride
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 簡介
    Cytochrome P450 是人類重要的代謝酵素之ㄧ,其中又以CYP3A 的含量最多。CYP3A的活性在不同個體間可以有很大的差異,因此對於許多經由CYP3A代謝的藥品其臨床表現可能會不同。利用體內探針性試藥可以評估個體間酵素活性的差異,其結果也比較具有臨床意義。Mosapride為新一代的胃腸蠕動促進劑,主要經由n-dealkylation的方式代謝成des-4-fluoro-benzyl metabolite(M-1)。根據許多體內藥品交互作用與體外酵素的研究發現,mosapride應該是主要經由CYP3A所代謝,因此mosapride應該可以發展成為體內CYP3A探針性試藥。
    研究目的
    本研究主要目的在利用大白鼠動物實驗模式來探討以mosapride 作為體內CYP3A活性探針性試藥的可行性。而為了研究mosapride在大白鼠體內動態,本研究也將開發新的分析方法以同時從血漿檢品中定量mosapride及其代謝物。
    研究方法
    在控制組實驗中,以靜脈注射方式投予1、5、10 or 15 mg/kg的mosapride至大白鼠以研究其藥物動態。另外,大白鼠事先以ketoconazole(抑制劑)或dexamethasone(誘導劑)進行CYP3A的活性調節後,再投予5 mg/kg的mosapride。Mosapride的血液檢體採樣收集至360分鐘,以二室模式估算其藥動參數。肝臟微粒體中CYP3A2含量表現則是以西方點墨法定量。
    研究結果
    Mosapride在大白鼠體內的清除率與肝臟微粒體中CYP3A2含量之相關性可利用well-stirred model與parallel tube model來加以描述,兩者呈現高度相關(分別為r = 0.824,p < 0.0001與r = 0.5412,p < 0.01),因此mosapride的清除率可以代表CYP3A的活性;另外,根據控制組與實驗組的數據,發展以有限採樣法(limited sampling strategy)的方式並經由確效評估證實,只要利用少量的血液檢品就可以對mosapride的AUC有準確的預測。
    研究結論
    以靜脈注射方式投予mosapride後,只要利用1至4個時間點的血中濃度就可以對mosapride的AUC有準確的預測,亦即對清除率有好的預測,因此對於mosapride作為大白鼠體內CYP3A活性探針性試藥的應用而言,提供了一個更方便並節省時間的評估方式。

    Introduction
    Cytochrome P450 3A is one of the most important CYP450 subfamilies because of its large number of xenobiotics and endogeneous substrates. Interindividual variability in the expression and activity of CYP3A is considerable, and may be responsible for variability in drug response. By administration of probe drug, it can permit measurement of real-time enzyme activity and provides more clinically relevant information. Mosapride, a new prokinetic agent, undergoes N-dealkylation metabolism to form des-4-fluoro-benzyl metabolite (M-1). According to the results of many drug-drug interaction studies and in vitro enzymatic studies, it seems that CYP3A family is the major enzyme which is responsible for the metabolism of mosapride. Therefore, mosapride could be a potential compound of CYP3A in vivo probe.
    Purpose
    The main objective of this study was to evaluate the feasibility of mosapride as an in vivo probe of CYP3A activity using the SD rat as an animal model. In order to study the kinetics of mosapride, a new HPLC method for simultaneous determination of mosapride and M-1 in rat plasma was developed.
    Methods
    Rats received mosapride(1、5、10 or 15 mg/kg)intravenously in the dose-linearity control groups. And in the CYP3A modulation groups, rats received 5 mg/kg mosapride after pretreatment with ketoconazole(inhibition)or dexamethasone ( induction ). The plasma concentrations of mosapride were followed for 360 min, and the kinetics parameters were estimated by two-compartmental analysis. The contents of CYP3A2 in hepatic microsomes of rats were measured by western blotting analysis.
    Results
    Based on the two hepatic clearance models, well-stirred model and parallel tube model, the hepatic CYP3A2 contents showed strongly correlation with mosapride clearance(r = 0.824,p < 0.0001 and r = 0.5412,p < 0.01 respectively). Therefore, mosapride clearance can be used to reflect the in vivo CYP3A activity. Based on the data of control and CYP3A modulation group, limited sampling strategies were derived, validated, and evaluated for its applicability. Mosapride AUC can be well predicted by using one to four time points of plasma concentrations.
    Conclusion
    One to four time points of plasma concentrations following intravenous administration of mosapride can precisely predict its AUC and hence clearance in rats. Therefore, this approach represents an effective metbod for assessing in vivo CYP3A activity.

    中文摘要 i Abstract iii 致謝 v 縮寫表 i 目錄 ii 圖目錄 ix 第壹章 緒論 1 第一節 肝臟細胞色素(Cytochrome P450) 1 一、 命名方式 2 二、 分布及特性 2 第二節 代謝酵素CYP3A 4 一、 種類 4 二、 個體間活性表現的差異 5 第三節 體內CYP3A探針性試藥 5 一、 作為體內探針性試藥的要件 6 二、 探針性試藥的應用 7 三、 目前已知的CYP3A體內探針性試藥介紹 9 第四節 Mosapride簡介 14 一、 物化性質 14 二、 作用機轉 14 三、 藥動特性 14 四、 藥物交互作用 19 五、 分析方法整理 20 第貳章 研究目的 22 第一節 定量分析方法的建立 22 第二節 體外肝臟微粒體代謝之研究 22 第三節 大白鼠體內藥物動力學參數的研究 23 第參章 實驗材料、儀器及方法 24 第一節 實驗材料 24 一、 實驗動物 24 二、 藥品與試劑 24 第二節 實驗儀器 28 一、 紫外光/可見光分光光度計 28 二、 螢光分光光度計 28 三、 高效能液相層析系統 ( HPLC system ) 28 四、 微粒體製備系統 29 五、 微粒體體外培養系統 29 六、 動物實驗手術及檢品處理 29 七、 西方點墨法 30 八、 繪圖及藥動分析軟體 31 第三節 實驗方法 32 一、 Mosapride紫外光全光譜與螢光全光譜 32 二、 藥品配製與定量分析 32 三、 Mosapride體外培養實驗 34 四、 Cisapride / mosapride在大白鼠之藥物動態試驗 35 五、 大白鼠肝臟微粒體製備 39 六、 大白鼠肝臟微粒體之蛋白質含量測定:Lowry method 40 七、 西方點墨法分析肝臟微粒體之CYP3A2 41 八、 實驗設計 46 九、 數據解析 51 第肆章 實驗結果 52 第一節 Mosapride分析方法開發與確效 52 一、 分析條件開發 52 二、 校正曲線 56 三、 確效評估 58 第二節 Mosapride體外培養試驗 61 一、 Mosapride代謝物生成試驗 61 二、 Mosapride在大白鼠經由CYP3A2代謝之定性試驗 64 第三節 Mosparide於大白鼠體內的藥物動態 66 一、 靜脈注射mosapride 66 二、 CYP3A酵素之抑制與誘導 72 第四節 CYP3A2表現量和mosapride藥動的相關性 77 一、 Lowry 法偵測肝臟微粒體蛋白質含量 77 二、 西方點墨法偵測肝臟微粒體CYP3A2含量表現 78 三、 肝臟CYP3A2表現和mosapride藥動參數之相關性 81 第五節 有限採樣法的開發 84 一、 單點血中濃度預測mosapride的AUC 84 二、 多點採血濃度預測mosapride之AUC 87 三、 確效分析 88 第六節 Mosapride與cisapride之相關性研究 91 第伍章 討論 92 第一節 分析方法開發與確效 92 第二節 Mosapride體外酵素培養試驗 92 第三節 Mosapride於大白鼠體內的藥品動態 93 一、 控制組 93 二、 抑制組 94 三、 誘導組 94 第四節 CYP3A2表現量和mosapride藥動的相關性 95 第五節 有限採樣法的開發 95 第六節 Cisapride與mosapride之相關性研究 96 第陸章 結論 97 參考文獻 98

    Aoki Y, Hakamata H, Igarashi Y, Uchida K, Kobayashi H, Hirayama N, Kotani A and Kusu F (2007) Liquid chromatography-tandem mass spectrometric method for determination of mosapride citrate in equine tissues. J Chromatogr B Analyt Technol Biomed Life Sci 858:135-142.
    Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, Inaba T, Kalow W, Gelboin HV and et al. (1989) Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 264:10388-10395.
    Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach RS, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J and Wrighton SA (2003) The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815-832.
    Chaobal HN and Kharasch ED (2005) Single-point sampling for assessment of constitutive, induced, and inhibited cytochrome P450 3A activity with alfentanil or midazolam. Clin Pharmacol Ther 78:529-539.
    Cotreau MM, von Moltke LL, Beinfeld MC and Greenblatt DJ (2000) Methodologies to study the induction of rat hepatic and intestinal cytochrome P450 3A at the mRNA, protein, and catalytic activity level. J Pharmacol Toxicol Methods 43:41-54.
    Cotreau MM, von Moltke LL and Greenblatt DJ (2005) The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 44:33-60.
    Curran MP and Robinson DM (2008) Mosapride: in gastrointestinal disorders. Drugs 68:981-991.
    Davies B and Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093-1095.
    FDA (September 2006) Guidance for Industry Drug Interaction Studies —Study Design, Data Analysis, and Implications for Dosing and Labeling, in (Services USDoHaH, Administration FaD, (CDER) CfDEaR and (CBER) CfBEaR eds).
    Floyd MD, Gervasini G, Masica AL, Mayo G, George AL, Jr., Bhat K, Kim RB and Wilkinson GR (2003) Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 13:595-606.
    Fuhr U, Jetter A and Kirchheiner J (2007) Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the "cocktail" approach. Clin Pharmacol Ther 81:270-283.
    Guengerich FP (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. Aaps J 8:E101-111.
    Guengerich FP (2008) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21:70-83.
    Guitton J, Buronfosse T, Desage M, Lepape A, Brazier JL and Beaune P (1997) Possible involvement of multiple cytochrome P450S in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochem Pharmacol 53:1613-1619.
    He P, Court MH, Greenblatt DJ and Von Moltke LL (2005) Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther 77:373-387.
    He P, Court MH, Greenblatt DJ and von Moltke LL (2006) Factors influencing midazolam hydroxylation activity in human liver microsomes. Drug Metab Dispos 34:1198-1207.
    Hreiche R, Megarbane B, Pirnay S, Borron SW, Monier C, Risede P, Milan N, Descatoire V, Pessayre D and Baud FJ (2006) Dexamethasone hepatic induction in rats subsequently treated with high dose buprenorphine does not lead to respiratory depression. Toxicol Appl Pharmacol 217:352-362.
    Huitema AD, Mathot RA, Tibben MM, Schellens JH, Rodenhuis S and Beijnen JH (2000) Validation of techniques for the prediction of carboplatin exposure: application of Bayesian methods. Clin Pharmacol Ther 67:621-630.
    Kato R and Yamazoe Y (1992) Sex-specific cytochrome P450 as a cause of sex-and species-related differences in drug toxicity. Toxicology Letters 64-65:661-667.
    Katoh T, Saitoh H, Ohno N, Tateno M, Nakamura T, Dendo I, Kobayashi S and Nagasawa K (2003) Drug interaction between mosapride and erythromycin without electrocardiographic changes. Jpn Heart J 44:225-234.
    Klees TM, Sheffels P, Dale O and Kharasch ED (2005) Metabolism of alfentanil by cytochrome p4503a (cyp3a) enzymes. Drug Metab Dispos 33:303-311.
    Krishnaiah YS, Murthy TK, Sankar DG and Satyanarayana V (2002a) The determination of mosapride citrate in bulk drug samples and pharmaceutical dosage forms using HPLC. Anal Sci 18:1269-1271.
    Krishnaiah YS, Murthy TK, Sankar DG and Satyanarayana V (2002b) A validated RP-HPLC method for the determination of mosapride citrate in bulk drug samples and pharmaceutical formulations. Pharmazie 57:814-816.
    Lacroix D, Sonnier M, Moncion A, Cheron G and Cresteil T (1997) Expression of CYP3A in the human liver--evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 247:625-634.
    Lowry JA, Kearns GL, Abdel-Rahman SM, Nafziger AN, Khan IS, Kashuba AD, Schuetz EG, Bertino JS, Jr., van den Anker JN and Leeder JS (2003) Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo. Clin Pharmacol Ther 73:209-222.
    Matsumoto S, Tagawa M, Amejima H, Nakao M, Kagemoto A, Fujii T, Miyazaki H and Sekine Y (1993a) Absorption, distribution and excretion of [carbonyl-14C]mosapride citrate after a single oral administration in rats, dogs and monkeys. Arzneimittelforschung 43:1084-1094.
    Matsumoto S, Yoshida K, Itogawa A, Tagawa M, Fujii T, Miyazaki H and Sekine Y (1993b) Metabolism of [carbonyl-14C]mosapride citrate after a single oral administration in rats, dogs and monkeys. Arzneimittelforschung 43:1095-1102.
    Michiels M, Monbaliu J, Hendriks R, Geerts R, Woestenborghs R and Heykants J (1987) Pharmacokinetics and tissue distribution of the new gastrokinetic agent cisapride in rat, rabbit and dog. Arzneimittelforschung 37:1159-1167.
    Mushiroda T, Douya R, Takahara E and Nagata O (2000) The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. Drug Metab Dispos 28:1231-1237.
    Nageswara Rao R, Nagaraju D, Alvi SN and Bhirud SB (2004) Development and validation of a liquid chromatographic method for determination of related-substances of mosapride citrate in bulk drugs and pharmaceuticals. J Pharm Biomed Anal 36:759-767.
    Nageswara Rao R, Nagaraju D and Narasaraju A (2006) Enantioselective determination of a gastroprokinetic drug using amylose tris-(3,5-dimethylphenylcarbamate) as a stationary phase by HPLC. J Pharm Biomed Anal 40:338-344.
    Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE and Zeldin DC (2006) The human intestinal cytochrome P450 "pie". Drug Metab Dispos 34:880-886.
    Patel BH, Suhagia BN, Patel MM and Patel JR (2008) High-performance liquid chromatography and thin-layer chromatography for the simultaneous quantitation of rabeprazole and mosapride in pharmaceutical products. J Chromatogr Sci 46:10-14.
    Pearce RE, Gotschall RR, Kearns GL and Leeder JS (2001) Cytochrome P450 Involvement in the biotransformation of cisapride and racemic norcisapride in vitro: differential activity of individual human CYP3A isoforms. Drug Metab Dispos 29:1548-1554.
    Ramakrishna NV, Vishwottam KN, Manoj S, Koteshwara M, Chidambara J and Varma DP (2005) Validation and application of a high-performance liquid chromatography--tandem mass spectrometry assay for mosapride in human plasma. Biomed Chromatogr 19:539-548.
    Sakashita M, Mizuki Y, Hashizume T, Yamaguchi T, Miyazaki H and Sekine Y (1993a) Pharmacokinetics of the gastrokinetic agent mosapride citrate after intravenous and oral administrations in rats. Arzneimittelforschung 43:859-863.
    Sakashita M, Yamaguchi T, Miyazaki H, Sekine Y, Nomiyama T, Tanaka S, Miwa T and Harasawa S (1993b) Pharmacokinetics of the gastrokinetic agent mosapride citrate after single and multiple oral administrations in healthy subjects. Arzneimittelforschung 43:867-872.
    Schuetz JD, Kauma S and Guzelian PS (1993) Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J Clin Invest 92:1018-1024.
    Shimada T, Yamazaki H, Mimura M, Inui Y and Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414-423.
    Streetman DS, Bertino JS, Jr. and Nafziger AN (2000) Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10:187-216.
    Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Hartwell PS, Raisys VA, Marsh CL, McVicar JP, Barr DM and et al. (1994) Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 271:549-556.
    Tsunoda SM, Velez RL, von Moltke LL and Greenblatt DJ (1999) Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 66:461-471.
    Yokoyama I, Mizuki Y, Yamaguchi T and Fujii T (1997) Simultaneous enantiomeric determination of a gastroprokinetic agent mosapride citrate and its metabolite in plasma using alpha 1-acid glycoprotein HPLC column. J Pharm Biomed Anal 15:1527-1535.
    官玫仙 (2007) Cisapride作為大白鼠體內CYP3A活性探針性試藥之可行性.

    無法下載圖示 校內:2058-08-19公開
    校外:2058-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE