| 研究生: |
游志仁 Yu, Chih-Jen |
|---|---|
| 論文名稱: |
以第一原理法探討鋰空氣電池電極之石墨電極缺陷密度與過氧化鋰堆積之關係 Investigation on the relation of accumulation of Li2O2 particles and defect density in Li-air battery electrode by first-principle calculation |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 鋰-空氣電池 、密度泛函理論 、VASP 、缺陷密度 |
| 外文關鍵詞: | Li-air battery, density functional theory, VASP, defect density |
| 相關次數: | 點閱:122 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰-空氣電池在目前能源發展中,被視為極具發展性的儲能系統之一,主要是因為其理論能量密度就高於鋰離子電池的10倍,但目前仍處於研發階段,主要是放電過程中所產生的過氧化鋰會堆積於空氣電極中的孔洞,導致空氣無法順利參與反應,最後使電池無法繼續運作;因此改善過氧化鋰在空氣電極中的堆積情形,是鋰-空氣電池發展中極具重要的一個項目。本論文採用以密度泛函理論為基礎的第一原理計算軟體-VASP進行模擬,內容主要是針對過氧化鋰在石墨烯上找尋一最佳吸附狀態,並分析其束縛能。並建構不同缺陷密度之石墨烯結構,來探討在不同缺陷密度下對於過氧化鋰間束縛能的影響。模擬結果顯示,過氧化鋰分子容易吸附於石墨烯上方2.719Å處,並較容易吸附於5-8-5缺陷上方,而過氧化鋰間約在相距10Å後彼此間影響較小,推算石墨烯的5-8-5缺陷密度為4.16%。而在此缺陷密度下目前的製備方式是可達成的。
The lithium-air battery is one of the most promisiry technologies among various electrochemical energy storage system. It’s theoretical energy density of this battery is 10 times higher than the traditional Li-ion battery.However,during discharging process precipitation of reaction products Li2O2 on the carbonaceous electrode will block the oxygen pathway. Therefore, how to improve the accumulation phenomenon of Li2O2 particles
is main purpose of this study and significantly limits the capacity of this battery. In this study, the first principle calculation based on the density functional theory was adopted to investigate the adopted to investigate the adsorption condition of Li2O2 particles on grapheme by using VASP. Binding energies of the adsorption under different density of lattice defect in grapheme structure were evaluated individually. The numerical results show that Li2O2 prefers to nucleate and grow near the 5-8-5 lattice defects sites 2.719 Å above the grapheme surface. As the distance between two Li2O2 particles is longer 10 Å, the interaction between Li2O2 particles become significantly reduced. In other words, Li2O2 particles are easily to adsorb on grapheme structure with 4.16% of 5-8-5 lattice defect density.
[1] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium - Air Battery: Promise and Challenges," Journal of Physical Chemistry Letters, vol. 1, pp. 2193-2203, Jul 2010.
[2] J. P. Zheng, R. Y. Liang, M. Hendrickson, and E. J. Plichta, "Theoretical energy density of Li-air batteries," Journal of the Electrochemical Society, vol. 155, pp. A432-A437, 2008.
[3] D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, and P. Mustarelli, "Recent advances in the development of Li-air batteries," Journal of Power Sources, vol. 220, pp. 253-263, Dec 2012.
[4] S. S. Zhang, D. Foster, and J. Read, "Discharge characteristic of a non-aqueous electrolyte Li/O-2 battery," Journal of Power Sources, vol. 195, pp. 1235-1240, Feb 2010.
[5] K. M. Abraham and Z. Jiang, "A polymer electrolyte-based rechargeable lithium/oxygen battery," Journal of the Electrochemical Society, vol. 143, pp. 1-5, Jan 1996.
[6] J. Xiao, D. H. Wang, W. Xu, D. Y. Wang, R. E. Williford, J. Liu, et al., "Optimization of Air Electrode for Li/Air Batteries," Journal of the Electrochemical Society, vol. 157, pp. A487-A492, 2010.
[7] J. Read, "Characterization of the lithium/oxygen organic electrolyte battery," Journal of the Electrochemical Society, vol. 149, pp. A1190-A1195, Sep 2002.
[8] J. Xiao, D. H. Mei, X. L. Li, W. Xu, D. Y. Wang, G. L. Graff, et al., "Hierarchically Porous Graphene as a Lithium-Air Battery Electrode," Nano Letters, vol. 11, pp. 5071-5078, Nov 2011.
[9] L. G. Cota and P. de la Mora, "On the structure of lithium peroxide, Li2O2," Acta Crystallographica Section B-Structural Science, vol. 61, pp. 133-136, Apr 2005.
[10] J. M. Garcia-Lastra, J. D. Bass, and K. S. Thygesen, "Communication: Strong excitonic and vibronic effects determine the optical properties of Li2O2," Journal of Chemical Physics, vol. 135, Sep 2011.
[11] K. C. Lau, R. S. Assary, P. Redfern, J. Greeley, and L. A. Curtiss, "Electronic Structure of Lithium Peroxide Clusters and Relevance to Lithium-Air Batteries," Journal of Physical Chemistry C, vol. 116, pp. 23890-23896, Nov 2012.
[12] C. Y. Su, Y. P. Xu, W. J. Zhang, J. W. Zhao, A. P. Liu, X. H. Tang, et al., "Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors," Acs Nano, vol. 4, pp. 5285-5292, Sep 2010.
[13] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 2009.
[14] M. Hofmann, D. Nezich, A. Reina, and J. Kong, "In-Situ Sample Rotation as a Tool to Understand Chemical Vapor Deposition Growth of Long Aligned Carbon Nanotubes," Nano Letters, vol. 8, pp. 4122-4127, Dec 2008.
[15] C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. J. Zhang, et al., "Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition," Nano Letters, vol. 11, pp. 3612-3616, Sep 2011.
[16] L. Wang, X. Y. Zhang, H. L. W. Chan, F. Yan, and F. Ding, "Formation and Healing of Vacancies in Graphene Chemical Vapor Deposition (CVD) Growth," Journal of the American Chemical Society, vol. 135, pp. 4476-4482, Mar 2013.
[17] S. H. M. Jafri, K. Carva, E. Widenkvist, T. Blom, B. Sanyal, J. Fransson, et al., "Conductivity engineering of graphene by defect formation," Journal of Physics D-Applied Physics, vol. 43, Feb 2010.
[18] O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund, and J. Keinonen, "Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation," Physical Review B, vol. 81, Apr 2010.
[19] 趙成大, "固體量子化學-材料化學的理論基礎." 2nd ed, 北京: 高等教育出版社, 2003.
[20] J. H. van Vleck, “Nonorthogonality and Ferromagnetism”, Phys. Rev, Vol. 49, No. 3, pp. 232-240, 1936.
[21] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev, Vol. 136, No. 3B, pp. B864-B871, 1964.
[22] W. Kohn, “Nobel Lecture: Electronic structure of matter—wave functions and density functionals”, Rev. Mod. Phys, Vol. 71, No. 5 pp. 1253-1266, 1998
[23] M. C. Payne, M. P. Teter, D.C. Allan, T. A. Arias, and J. D. Joannopoulas, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys, Vol. 64, No. 4, pp.1045-1097, 1992.