簡易檢索 / 詳目顯示

研究生: 羅君豪
Luo, Chun-Hao
論文名稱: 澎湖玄武岩之巨觀與微觀磁特性研究
Study on macro- and micro-magnetism in basaltic rocks in Penghu Islands of Taiwan
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 191
中文關鍵詞: 磁性礦物玄武岩鈦磁鐵礦磁力顯微鏡
外文關鍵詞: magnetic mineral, basaltic rocks, single-domain, multi-domain, natural remanent magnetism
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界中的磁性礦物可以紀錄其形成時的古地磁強度以及方向,不過岩石中多元的礦物相以及化學組成,可能使得古地磁的記錄更加複雜化。許多著名的天然磁學研究充分地解釋了地球磁場的形成、磁性礦物種類以及不同岩石之間的磁特性,卻發現一些影響岩石磁特性的因素會控制於微小的礦物甚至於內部的磁結構。因此本研究希望搭配高解析電子顯微鏡、磁力顯微鏡等微觀技術,來輔助分析一些巨觀尺度下觀察到的磁異常現象。本研究以臺灣澎湖群島玄武岩為例,初步的自然殘磁以及磁感率的測定發現矽質玄武岩的殘磁方向和強度相對穩定;鹼性玄武岩在熱退磁的過程中沒有穩定的殘磁方向,且退磁溫度點較低,不過卻有相當高的磁感率。結果顯示:矽質玄武岩的氧化程度較鹼性玄武岩高,且有觀察到鈦磁鐵礦氧化偏析產生鈦鐵礦,其成分相對較複雜。不過由於矽質玄武岩含有較多次微米級的鈦磁鐵礦,因此所含的單磁區比例高,且這些單磁區礦物之殘磁方向具有較高的一致性。反之鹼性玄武岩雖然只含有鈦磁鐵礦而相對單純,不過其多磁區訊號比例較高,且單磁區的殘磁方向分布不一致,因此導致在巨觀上呈現不穩定的殘磁特性。殘磁穩定的矽質玄武岩中還有觀察到多磁區有順向排列甚至被拉張的情形,且方向是和其噴發年代時的大地應力有著正相關。透過多磁區結構可以比較出熱擾動以及外加應力之間的影響規模,以及輔助證明了澎湖群島在停止噴發後的確是處在穩定的被動大陸邊緣。因此認為在古地磁領域,磁力顯微鏡是可以提供不一樣的觀察結果;其對磁區的構建能力可以在古地磁或地質領域貢獻新的輔助應用。

    Rock magnetic properties such as stability of remanent magnetization, magnetic coercivity, and magnetic susceptibility are controlled by the properties of magnetic minerals. Therefore, understanding mineral magnetism is crucially important to interpret rock magnetic properties. Basaltic rocks have been generally regarded as reliable recorders to record past geomagnetic natures and behaviors. Despite this recognition, we can still observe that some of the basaltic rocks do not display good recorder for the paleomagnetism. Here we study two types of basaltic rocks collected from the Penghu islands in Taiwan, which show that alkali basalt compared with tholeiitic basalt has relatively high magnetic susceptibility but rather an unstable remanent magnetization. From results, we know that there are two kind of magnetic minerals in tholeiitic basalt from calibration line of XRD and have higher degree of oxidation. However, the higher ratio of single-domain causes the stable NRM, and the results of MFM also can respond to the results of thermal decay. Conversely, there is only one kind of magnetic minerals in alkali basalt, but the higher ratio of multi-domain causes the unstable NRM. Besides, the results of MFM are agreed with the results of macro-magnetic analysis if the remanent magnetic direcion is very stable.

    目錄 中文摘要 I Abstract II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 磁學研究回顧 1 1.2 地質背景回顧 9 1.3 研究動機 15 第二章 基本理論 17 2.1 磁性 17 2.2 磁性礦物 19 2.3 殘磁 24 2.4 磁學參數 26 2.5 磁區結構 27 第三章 岩石樣品採集與研究方法 29 3.1 岩石樣品與採集 29 3.1.1 Case I 虎井嶼、桶盤嶼、煙墩山 29 3.1.2 Case II 外垵漁港、大菓葉、錠鉤嶼 33 3.1.3 Case III 桶盤上層、桶盤下層 35 3.2 實驗流程 38 3.3 X光粉晶繞射儀分析 (XRD) 39 3.4 化學分析電子光譜儀-XPS (ESCA) 46 3.5 掃描式電子顯微鏡分析 (SEM) 46 3.6 熱退磁分析 (Thermal Demagnetization) 47 3.7 磁滯曲線參數 (SQUID VSM) 47 3.8 磁力顯微鏡分析 (MFM) 48 第四章 研究結果與討論 50 4.1 Case I、Case II 50 4.1.1 全岩粉末XRD礦物相分析 50 4.1.2 磁選粉末XRD礦物相分析 53 4.1.3 檢量線 56 4.1.4 XPS鐵氧化態分析 58 4.1.5 SEM岩相觀察與分析 61 4.1.6 熱退磁分析 76 4.1.7 磁滯曲線分析 78 4.1.8 磁力顯微鏡分析 80 4.1.9 Case I、Case II討論與結論 88 4.2 Case III 樣本逐步熱退磁之巨觀微觀磁力分析比較 92 4.2.1 多磁區殘磁強度 92 4.2.2 多磁區之磁區結構 105 4.2.3 單磁區之方向 117 4.2.4 Case III討論與結論 123 第五章 綜合討論與結論 125 5.1 磁性礦物組織成份探討 125 5.2 磁穩定性以及結構變化探討 129 參考文獻 135 附錄 157 表目錄 表 1 1澎湖群島鉀-氬定年結果 (修改自*:莊文星,1988; Juang and Chen, 1992; PH-:李寄嵎,1994)。 12 表 2 1自然殘磁分類示意表。 25 表 3 1 Case I熱退磁各溫度點 (25 oC - 700 oC) 之磁偏角、磁傾角以及磁感率之表格。 31 表 3 2 Case II熱退磁各溫度點 (25 oC - 700 oC) 之磁偏角、磁傾角以及磁感率之表格。 33 表 3 3 Case III熱退磁各溫度點 (25 oC - 700 oC) 之磁偏角、磁傾角以及磁感率之表格。 37 表 3 4檢量線所使用之鈦磁鐵礦以及鈦赤鐵礦不同成分對應繞射角和晶格常數數據點。 41 表 4-1 1 Case I三個樣本所取用進行平均計算的數據點面積分,以及所採用之數據點的鐵價態平均值比例。 59 表 4-1 2 Case II三個樣本所取用進行平均計算的數據點面積分,以及所採用之數據點的鐵價態平均值比例。 60 表 4-1 3 Case I微觀數據分析綜合比較之表格。 91 表 4-2 1 PH 79.6之巨觀殘磁各項量測參數結果。 104 表 4-2 2 PH 111.3之巨觀殘磁各項量測參數結果。 104 圖目錄 圖 1 1冰島西南方雷加恩洋脊所測得之磁力異常條帶 (Vine, 1966)。 1 圖 1 2經過優選過後的夏威夷熔岩流樣本 (Cromwell et al., 2015)。 2 圖 1 3採集自La Palisse村之不同地點之玄武岩樣本 (Boiron et al., 2013)。 3 圖1 4夏威夷玄武岩中鈦磁鐵礦之背散式電子影像圖以及MFM影像圖 (Shaar and Feinberg, 2013)。 4 圖 1 5鈦磁鐵礦在加熱前後以及靜置後之MFM影像圖 (De Groot et al., 2014)。 5 圖 1 6鐵鎵合金 (Fe81Ga19) 受到應力影響示意圖 (Song et al., 2009)。 6 圖 1 7電工鋼晶粒在無應力作用時,不同外加磁場下對於磁域結構的影響(Oiu et al., 2017)。 7 圖 1 8電工鋼晶粒在30.9 Mpa應力作用時,不同外加磁場下對於磁區結構的影響 (Oiu et al., 2017)。 7 圖 1 9電工鋼晶粒在61.9 Mpa應力作用時,不同外加磁場下對於磁區結構的影響 (Oiu et al., 2017)。 8 圖 1 10早中新世至今之南中國海應力演變示意圖 (Angelier et al., 1990)。 10 圖 1 11澎湖玄武岩K2O+Na2O含量對SiO2之變化圖 (陳培源和張郇生,1995)。 12 圖 1 12板塊斷裂後矽質玄武岩在裂谷內部中央處,軟流圈頂著岩石圈向上拱起示意圖 (修改自Ragland, 1989; Chung et al., 1994)。 13 圖 2 1鈦鐵氧化物之三相圖 (Butler, 1992)。 19 圖2 2鈦赤鐵礦根據不同鈦含量所對應到的飽和磁化強度以及居里溫度 (Nagata, 1961; Stacey and Banerjee, 1974; Butler, 1992)。 22 圖 2 3鈦磁鐵礦和鈦赤鐵礦固溶體線圖 (Nagata, 1961; Burton, 1991; Butler, 1992)。 22 圖 2 4鈦赤鐵礦在SEM下的背散式電子影像圖 (McEnroe et al., 2005)。 23 圖 2 5磁滯曲線以及各項參數示意圖。 26 圖 2 6磁性載體的粒徑與矯頑力之關係圖 (Dunlop, 1981)。 28 圖 3 1澎湖群島相對位置示意地圖,以及所有樣本之採樣地點。 30 圖 3 2 Case I樣本之熱退磁之殘磁方向數據點投影圖。 32 圖 3 3 Case II樣本之熱退磁之殘磁方向數據點投影圖。 34 圖 3 4 Case III樣本之採樣地點示意圖,為桶盤嶼之西南角柱狀玄武岩。 36 圖 3 5 Case III樣本採集點分層示意圖。 36 圖 3 6 Case III樣本之熱退磁之殘磁方向數據點投影圖。 37 圖 3 7實驗方法以及流程示意圖。 38 圖 3 8以Fe2.75Ti0.25O4 鈦磁鐵礦為例選取標準卡示意圖。 39 圖 3 9以Fe2.75Ti0.25O4 鈦磁鐵礦為例選取峰值示意圖。 40 圖 3 10鈦磁鐵礦 (Titanomagnetite, Fe3-xTixO4) 檢量線,以繞射角為Y軸做圖。 42 圖 3 11鈦磁鐵礦 (Titanomagnetite, Fe3-xTixO4) 檢量線,以晶格常數a為Y軸做圖。 42 圖 3 12鈦赤鐵礦 (Titanohematite, Fe2-xTixO3) 檢量線,以繞射角為Y軸做圖。 43 圖 3 13鈦赤鐵礦 (Titanohematite, Fe2-xTixO3) 檢量線,以晶格常數a為Y軸做圖。 43 圖 3 14鈦赤鐵礦 (Titanohematite, Fe2-xTixO3) 檢量線,以晶格常數c為Y軸做圖。 44 圖 3 15原子力顯微鏡運作示意圖。 49 圖 3 16磁力顯微鏡磁力作用原理示意圖。 49 圖 4-1 1 Case I全岩粉末之XRD分析圖。 51 圖 4-1 2 Case II全岩粉末之XRD分析圖。 52 圖 4-1 3 Case I磁選粉末之XRD分析圖。 54 圖 4-1 4 Case II磁選粉末之XRD分析圖。 55 圖 4-1 5 Case I、II檢量線圖。 57 圖 4-1 6 Case I、II樣本的磁性礦物投圖至鈦鐵氧化物之三相圖 (修改自Butler, 1992)。 57 圖 4-1 7 Case I XPS分析圖譜。 59 圖 4-1 8 Case II XPS分析圖譜。 60 圖 4-1 9 相同倍率下 (250X) 之背散式電子顯微影像。 61 圖 4-1 10 PH 6薄片之BSE影像圖。 63 圖 4-1 11 PH 5薄片之BSE影像圖。 64 圖 4-1 12 PH 5薄片之BSE影像圖。 66 圖 4-1 13 PH 6薄片之BSE影像圖。 67 圖 4-1 14 PH 65薄片之BSE影像圖。 69 圖 4-1 15 PH 65偏析鈦磁鐵礦之BSE影像圖和其搭配之MFM影像圖。 70 圖 4-1 16 PH 67薄片之BSE影像圖。 72 圖 4-1 17 PH 67薄片之BSE影像圖。 72 圖 4-1 18 PH 13薄片之BSE影像圖。 73 圖 4-1 19 PH 16薄片之BSE影像圖。 75 圖 4-1 20熱退磁溫度點 (25-700 oC) 對應殘磁強度示意圖。 77 圖 4-1 21 Case I、II樣本磁滯曲線分析圖。 79 圖 4-1 22樣本PH 6之MFM影像圖。 81 圖 4-1 23樣本PH 5之MFM影像圖。 82 圖 4-1 24樣本PH 13之MFM影像圖。 83 圖 4-1 25樣本PH 65之MFM影像圖。 85 圖 4-1 26樣本PH 67之MFM影像圖。 86 圖 4-1 27樣本PH 16之MFM影像圖。 87 圖 4-2 1 PH 79.6之25 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 93 圖 4-2 2 PH 79.6之200 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 94 圖 4-2 3 PH 79.6之420 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 95 圖 4-2 4 PH 79.6之540 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 96 圖 4-2 5 PH 79.6之660 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 97 圖 4-2 6 PH 111.3之25 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 99 圖 4-2 7 PH 111.3之200 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 100 圖 4-2 8 PH 111.3之420 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 101 圖 4-2 9 PH 111.3之540 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 102 圖 4-2 10 PH 111.3之660 oC試片中多磁區MFM影像圖以及其表面形貌與磁力大小剖面分析圖。 103 圖 4-2 11 PH 79.6之殘磁方向、採樣岩芯和古應力拉張方向示意圖。 105 圖 4-2 12 PH 79.6之25 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 106 圖 4-2 13 PH 79.6之200 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 107 圖 4-2 14 PH 79.6之420 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 108 圖 4-2 15 PH 79.6之540 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 109 圖 4-2 16 PH 79.6之660 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 110 圖 4-2 17 PH 111.3之殘磁方向、採樣岩芯和古應力拉張方向示意圖。 111 圖 4-2 18 PH 111.3之25 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 112 圖 4-2 19 PH 111.3之200 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 113 圖 4-2 20 PH 111.3之420 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 114 圖4-2 21 PH 111.3之540 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 115 圖 4-2 22 PH 111.3之660 oC試片中多磁區MFM影像圖以及其磁區排列示意圖。 116 圖 4-2 23 PH 79.6之25 oC試片中單磁區MFM影像圖以及其指示方向示意圖。 117 圖 4-2 24 PH 79.6之200 oC試片中單磁區MFM影像圖以及其指示方向示意圖。 118 圖 4-2 25 PH 79.6之420 oC試片中單磁區MFM影像圖以及其指示方向示意圖。 119 圖 4-2 26 PH 111.3之25 oC試片中單磁區MFM影像圖以及其指示方向示意圖。 120 圖 4-2 27 PH 111.3之200 oC試片中單磁區MFM影像圖以及其指示方向示意圖。 121 圖 4-2 28 PH 111.3之420 oC試片中單磁區MFM影像圖以及其指示方向示意圖。 122 圖 5 1氧化偏析後形成鈦鐵礦以及磁鐵礦之XRD圖譜 (Tan et al., 2016)。 125 圖 5 2本研究兩類玄武岩中觀察到單磁區以及多磁區含量比例。 131 圖 5 3 Case III樣本受應力作用以及巨觀微觀殘磁量測結果之綜合圖示。 133 圖 5 4南海區域構造應力場模擬結果 (陳群策等,2014)。 134 圖 5 5臺灣南部GPS觀測站之水平移動速度,以澎湖白沙島觀測站 (S01R) 做為不動點進行觀測 (Ho, 1986; Yu et al., 1997; Byrne and Liu, 2002)。 134

    參考文獻
    李宗展 (1993)。澎湖玄武岩中裂隙及氣孔填充礦物之特性分析,國立成功大學地球科學研究所碩士論文,共89頁。
    李寄嵎 (1994)。澎湖地區玄武岩類與福建地區基性脈岩之定年學與地球化學研究兼論中生代晚期以來中國東南地函之演化,國立臺灣大學地質學研究所博士論文,共226頁。
    林朝棨、邱岳、呂學俊、黃敦友 (1957)。澎湖群島之地質礦產,臺灣礦業第9卷,第3-4期,第26-38頁。
    邱詠恬 (2008)。利用GPS觀測資料探討宜蘭平原之現金地殼變形,國立臺灣大學地質科學研究所碩士論文,共90頁。
    周新民、陳圖華 (1981)。我國東南沿海新生代玄武岩的成分和演化特徵,地質學報,第1期,第29-40頁。
    俞何興 (1989)。東海盆地-其地質架構及地體構造歷史,臺灣大學海洋學刊,第24期,第23-38頁。
    徐閔儀 (2006)。台灣北部震間地殼變形: 1995-2005年GPS觀測,國立成功大學地球科學研究所碩士論文,共114頁。
    張中杰、劉一峰、張素芳 (2009)。南海北部珠江口-瓊東南盆地地殼速度結構與幾何分段,地球物理學報,52(10),第2461-2471頁。
    莊文星 (1988)。臺灣新生代晚期火山岩之定年與地球化學研究,國立臺灣大學海洋研究所博士論文,共231頁。
    莊文星 (1999)。臺灣之火山活動與火成岩,國立自然科學博物館,共324頁。
    莊文星 (2000)。臺灣澎湖、綠島與蘭嶼火山頸地質景觀,中國地質學會89年年會暨學術研討會手冊及論文摘要,第174-176頁。
    陳培源、張郇生 (1995)。澎湖群島之地質與地史,澎湖縣政府文化局,共239頁。
    欒錫武、張亮 (2009)。南海構造演化模式:綜合作用下的被動擴張,海洋地質與第四紀地質,29(6),第59-74頁。
    Akbar, S., Hasanain, S. K., Azmat, N. & Nadeem, M. (2004). Synthesis of Fe2O3 nanoparticles by new Sol-Gel method and their structural and magnetic characterizations. Journal of Applied Sciences Research, 3(3), 417-433.
    Almeida, T. P., Kasama, T., Muxworthy, A. R., Williams, W., Nagy, L., Hansen, T. W., Brown, P. D., & Dunin-Borkowski, R. E. (2014). Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetites particles. Nature Communications, 5, 5154.
    Anand, R. R., & Gilkes, R. J. (1984). Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite. Journal of Soil Science, 35, 559-567.
    Angelier, J., Bergerat, F., Chu, H. T., Juang, W. S., & Lu, C. Y. (1990). Paleostress analysis as a key to margin extension: The Penghu Islands, South China Sea. Tectonophysics, 183(1-4), 161-176.
    Bailey, S. W., Weege, R. J., Cameron, E. N., & Spedden, H. R. (1956). The alteration of ilmenite in beach sands. Economic Geology, 51(3), 263-279.
    Banerjee, S. K., & Moskowitz, B. M. (1985). Ferrimagnetic properties of magnetites. In J. K. Kirschvink, D. S. Jones and B. J. MacFadden (Eds.), Magnetite Biomineralization and Magnetoreception in Organisms, Plenum, New York, 17-41.
    Bascou, J., Raposo, M. I. B., Vauchez, A., & Egydio-Silva, M. (2002). Titanohematite lattice-preferred orientation and magnetic anisotropy in high-temperature mylonites. Earth and Planetary Science Letters, 198, 77-92.
    Boiron, T., Bascou, J., Camps, P., Ferre, C. E., Maurice, C., Guy, B., Gerbe, C. M., & Launeau, P. (2013). Internal structure of basalt flows: insights from magnetic and crystallographic fabrics of the La Palisse volcanics, French Massif Central. Geophysical Journal International, 193(2), 585-602.
    Bozorth, R. M. (1993). Ferromagnetism. Ferromagnetism, by Richard M. Bozorth, pp. 992.
    Brownlee, S. J., Feinberg, J. M., Kasama, T., Harrison, R. J., Scott, G. R., & Renne, P. R. (2011). Magnetic properties of ilmenite-hematite single crystals from the Ecstall pluton near Prince Rupert, British Columbia. Geochemistry, Geophysics, Geosystems, 12(9), 1525-2027.
    Buddington, A., & Lindsley, D. (1964). Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5(2), 310-357.
    Burton, B. P. (1991). The interplay of chemical and magnetic ordering. Reviews in Mineralogy and Geochemistry, 25, 303-321.
    Burton, B. P., Robinson, P., McEnroe, S. A., Fabian, K., & Ballaran, T. B. (2008). A low-temperature phase diagram for ilmenite-rich compositions in the system Fe2O3-FeTiO3. American Mineralogist, 93(8-9), 1260-1272.
    Butler, R.F., & Banerjee, S.K. (1975). Theoretical single-domain grain-size range in magnetite and titanomagnetite. Journal of Geophysical Research, 80(29), 4049-4058.
    Butler, R. F. (1992). Paleomagnetism: magnetic domains to geologic terranes. Boston: Blackwell Scientific Publications.
    Byrne, T., & Liu, C. S. (1992). Geology and geophysics of an arc-continent collision, Taiwan. Geological Society ofAmerica Special Paper. Geological Society of America,Boulder, CO, 358.
    Callister, W. D. (2009). Materials Science and Engineering: An Introduction. John Wiley and Sons, pp. 992.
    Chen, J. C. (1973). Geochemistry of basalts from Penghu Islands. 50th Anniversary Geological Society of China, 1(16), 23-36.
    Chou, Y. M., Song, S. R., Aubourg, C., Lee, T. Q., Boullier, A. M., Song, Y. F., Yeh, E. C., Kuo, L. W., & Wang, C. Y. (2012). An earthquake slip zone is a magnetic recorder. Geology, 40(6), 551-554.
    Chung, S. L., & Sun, S. S. (1992). A new magnetic model for the East Taiwan Ophiolite and it’s implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters, 109, 133-145.
    Chung, S. L., Sun, S. S., Tu, K., Chen, C. H., & Lee, C. Y. (1994). Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology, 112, 1-20.
    Claramunt, S., Wu, Q., Maestro, M., Porti, M., Gonzalez, M. B., Martin-Martinez, J., Campabadal, F., & Nafria, M. (2015). Non-homogeneous conduction of conductive filaments in Ni/HfO2/Si resistive switching structures observed with CAFM. Microelectronic Engineering, 147(1), 335-338.
    Cloete, M., Hart, R. J., Schmid, H. K., Drury, M., Demanet, C. M., & Sankar, K. V. (1999). Characterization of magnetite particles in shocked quartz by means of electron- and magnetic force microscopy: Vredefort, South Africa. Contrib Mineral Petrol, 137, 232-245.
    Cromwell, G., Tauxe, L., Staudigel, H., & Ron, H. (2015). Paleointensity estimates from historic and modern Hawaiian lava floes using glassy basalt as a primary source material. Physics of the Earth and Planetary Interiors, 241, 44-56.
    Day, R., Fuller, M., & Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Physics of the Earth and Planetary Interior, 13(4), 260-267.
    De Groot, B. M., & De Groot, L. V. (2019). A low-cost device for measuring local magnetic anomalies in volcanic terrain. Geoscientific Instrumentation, Methods and Data Systems, 8, 217-225.
    De Groot, L. V., Fabian, K., Bakelaar, I. A., & Dekkers, M. J. (2014). Magnetic force microscopy reveals meta-stable magnetic domain states that prevent reliable absolute palaeointensity experiments. Nature Communications, 5, 4548.
    De Groot, L. V., Fabian, K., Beguin, A., Reith, P., Barnhoorn, A., & Hilgenkamp, H. (2018). Determining Individual Particle Magnetizations in Assemblages of Microngrains. Geophysical Research Letters, 45(7), 2995-3000.
    Dietze, F., Kontny, A., Heyde, I., & Vahle, C. (2011). Magnetic anomalies and rock magnetism of basalts from Reykjanes (SW-Iceland). Studia Geophysica et Geodaetica, 55(1), 109-130.
    Dunlop, D. J. (1981). The rock magnetism of fine particles. Physics of the Earth and Planetary Interior, 26(1-2), 1-26.
    Dunlop, D. J. (1990). Developments in rock magnetism. Reports on Progress in Physics, 53(6), 707-792.
    Dunlop, D. J. (1998). Thermoremanent magnetization of nonuniformly magnetized grains. Journal of Geophysical Research: Solid Earth, 103(B12), 30561-30574.
    Engelmann, R., Kontny, A., & Lattard, D. (2010). Low‐temperature magnetism of synthetic Fe‐Ti oxide assemblages. Journal of Geophysical Research, 115, B12107.
    Fabian, K., & Hubert, A. (1999). Shape-induced pseudo-single-domain remanence. Geophysical Journal International, 138(3), 717-726.
    Fabian, K. (2006). Approach to saturation analysis of hysteresis measurements in rock magnetism and evidence for stress dominated magnetic anisotropy in young mid-ocean ridge basalt. Physics of the Earth and Planetary Interiors, 154, 299-307.
    Fabian, K., McEnroe, S. A., Robinson, P., & Shcherbakov, V. (2008). Exchange bias identifies lamellar magnetism as the origin of the natural remanent magnetization in titanohematite with ilmenite exsolution from Modum, Norway. Earth and Planetary Science Letters, 268, 339-353.
    Feinberg, J. M., Scott, G. R., Renne, P. R., & Wenk, H. R. (2005). Exsolved magnetite inclusions in silicates: Features determining their remanence behavior. Geology, 33, 513-516.
    Feinberg, J. M., Harrison, R. J., Kasama, T., Dunin-Borkowski, R. E., Scott, G. R., & Renne, P. R. (2006). Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: An electron holography study. Journal of Geophysical Research, 111, B12S15.
    Frandsen, C., Stipp, S. L. S., McEnroe, S. A., Madsen, M. B., & Knudsen, J. M. (2004). Magnetic domain structure and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Physics of Earth and Planetary Interiors, 141(2), 121-129.
    Fu, X., Wang, Y., & Wei, F. (2010). Phase Transitions and Reaction Mechanism of Ilmenite Oxidation. Metallurgical and Materials Transactions A, 41, 1338-1348.
    Fujimoto, K., & Kikawa, E. (1989). Alteration of Titanomagnetites and Its Related Magnetic Properties in the Noya Geothermal Area, Central Kyushu, Japan. Journal of Geomagnetism and Geoelectricity, 41, 39-64.
    Gavagnin, M., Wanzenboeck, H. D., Belic, D., Shawrav, M. M., Persson, A., Gunnarsson, K., Svedlindn, P., & Bertagnolli, E. (2014). Magnetic force microscopy study of shape engineered FEBID iron nanostuctures. Physics Status Solidi A, 211(2), 368-374.
    Ge, K., & Liu, Q. (2014). Effects of the grain size distribution on magnetic properties of magnetite: constraints from micromagnetic modeling. Chinese Science Bulletin, 59(34), 4763-4773.
    Goguichaichvili, A., Pozzo, A. L. M., Rocha-Fernandez, J. L., Urrutia-Fucugauchi, J., & Soler-Arechalde, A. M. (2009). Paleomagnetic and rock-magnetic study on volcanic units of the Valsequillo Basin: implications for early human occupation in central Mexico. Earth Planets Space, 61, 205-211.
    Gomez, A., Avila, A., & Hinestroza, J. P. (2010). Surface charge estimation on hemispherical dielectric samples from EFM force gradient measurements. Journal of Electronstatics, 68(1), 79-84.
    Goulart, A. T., Fabris, J. D., De Jesus Filho, M. F., Coey, J. M. D., Da Costa, G. M., & De Grave, E. (1998). Iron Oxides in a Soil Developed from Basalt. Clays and Clay Minerals, 46(4), 369-378.
    Goswami, A., Alam, K. M., Kumar, P., Kar, P., Thundat, T., & Shankar, K. (2020). Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning prode microscopy. Carbohydrate Polymers, In Press, Journal Pre-proof, 116393.
    Grachev, A. F., Pechersky, D. M., & Tsel’movich, V. A. (2011). Titanomagnetites and Ilmenites from the Early Cenozoic Basalts and Limburgites of the Northern Tien Shan. Physics of the Solid Earth, 47(6), 475-487.
    Grey, I. E., & Reid, A. F. (1975). The structure of pseudorutile and its role in the natural alteration of ilmenite. American Mineralogist, 60, 898-906.
    Gunnlaugsson, H. P., Helgason, O., Kristjansson, L., Nornberg, P., Rasmussen, H., Steinporsson, S., & Weyer, G. (2006). Magnetic properties of olivine basalt: Application to Mars. Physics of Earth and Planetary Interior, 154(3-4), 276-289.
    Guo, X., Wang, Y. T., Zhao, D. G., Jiang, D. S., Zhu, J. J., Liu, Z. S., Wang, H., Zhang, S. M., Qiu, Y. X., Xu, K., & Yang, H. (2010). Microstructure and strain analysis of GaN epitaxial films using in-plane grazing incidence x-ray diffraction. Chinese Physics B, 19(7), 076804.
    Haggerty, S. E. (1976). Opague mineral oxides in terrestrial igneous rocks. In: Rumble, D. III (ed.) Oxide Minerals Reviews in Mineralogy, 3, Mineralogical Society of America, Chantilly, VA, 101-300.
    Haggerty, S. E. (1991). Oxide textures - a mini-atlas. In: Lindsley, D. H. (ed.) Oxide Minerals: their Petrologic and Magnetic Significance. Reviews in Mineralogy, 25, Mineralogical Society of America, Chantilly, VA, 29-220.
    Halgedah, S. & Fuller, M. (1983). The dependence of magnetic domain structure upon magnetization state with emphasis upon nucleation as a mechanism for pseudo- single-domain behavior. Journal of Geophysical Research: Solid Earth, 88(B8), 6505-6522.
    Hasegawa, T., Pei, W., Wang, T., Fu, Y., Washiya, T., Saito, H., & Ishio, S. (2008). MFM analysis of the magnetization process in L10–A1 FePt patterned film fabricated by ion irradiation. Acta Materialia, 56(7), 1564-1569.
    Hayasaka, I. (1933). Geologic data about the Boko Islands, Taiwan. Tigaku Kizi, 4, 73-78.
    Hayes, D. E. (1988). Age-depth relationships and depth anomalies in the southeast Indian Ocean and South Atlantic Ocean. Journal of Geophysical Research, 94(B4), 2937-2954.
    Ho, K. S., Chen, J. C., Smith, A. D., & Juang, W. S. (2000). Petrogenesis of two groups of pyroxenite from Tungchihsu, Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China. Chemical Geology, 167, 355-372.
    Horng, C. S., Laj, C., Lee, T. Q., & Chen, J. C. (1992). Magnetic characteristics of sedimentary rocks from the Tsengwen-chi and Erhjen-chi sections in southwestern Taiwan. Terrestrital, Atmospheric and Oceanic Sciences, 3(4), 519-532.
    Horng, C. S., Torii, M., Shea, K. S., & Kao, S. J. (1998). Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164, 467-481.
    Hsieh, H. H., Chen, C. H., Lin, P. Y., Yen, H. Y. (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90, 26-33.
    Hsu, I-C., Kienzle, J., Scharon, L., & Sun, S. S. (1966). Paleomagnetic Investigation of Taiwan Igneous Rocks. Bulletin of The Geological Survey of Taiwan, 17, pp.81.
    Huang, X. W., Su, B. X., Zhou, M. F., Gao, J. F., & Qi, L. (2017). Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity. Lithos, 282-283, 215-227.
    Hunt, C. P., Moskowitz, B. M., & Banerjee, S. K. (1995a). Magnetic properties of rocks and minerals, in Rock Physics and Phase Relations: A Handbook of Physical Constants. American Geophysical Union, 189-204.
    Ibragimov, Sh. Z., & Zakirov, T. R. (2016). Homogenization of titanomagnetites with magnetite-ulvospinel exsolution structures according to the thermomagnetic data: Modeling and experiment. Izvestiya, Physics of the Solid Earth, 52, 297-304.
    Iglesias, V., Wu, Q., Porti, M., Nafria, M., Bersuker, G., & Cordes, A. (2015). Monitoring defects in III–V materials: A nanoscale CAFM study. Microelectronic Engineering, 147(1), 31-36.
    Jahn, B. M., Chen, P. Y., & Yen, T. P. (1976). Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geological Society of America Bulletin, 86(5), 763-776.
    Jia, P., Chen, L., Rao, J., Wang, Y., Meng, Q., & Zhou, Y. (2017). Evolution of Phase, Microstructure and ZrC Lattice Parameter in Solid-solution-treaded W-ZrC Composite. Scientific Reports, 7, 6531.
    Jiang, W. T., Horng, C. S., Roberts, A. P., & Peacor, D. R. (2001). Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters, 193(1-2), 1-12.
    Juang, W. S., & Chen, J. C. (1992). Geochronology and geochemistry of Penghu basalts, Taiwan Strait and their tectonic significance. Journal of Southeast Asian Earth Sciences, 7(2-3), 185-193.
    Kao, S. J., Horng, C. S., Roberts, A. P., & Liu, K. K. (2004). Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology, 203, 153-168.
    Kawamura, N., Kawamura, K., & Ishikawa, N. (2008). Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench. Earth Planets Space, 60, 179-189.
    Klein, C., & Hurlburt, C. S. (1993). Manual of Mineralogy. John Wiley and Sons Inc., New York, pp. 681.
    Kletetschka, G., Wasilewski, P. J., Taylor, P. T. (2002). The role of hematite-ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data. Tectonophysics, 347, 167-177.
    Kozlovsky, Y. A. (1987). Magnetic Properties of Rocks. In: Kozlovsky Y.A. (eds) The Superdeep Well of the Kola Peninsula. Exploration of the Deep Continental Crust. Springer, Berlin, Heidelberg, pp. 368-377.
    Kumar, R., Varandani, D., & Mehta, B. R. (2016). Nanoscale interface formation and charge transfer in graphene/silicon Schottky junctions; KPFM and CAFM studies. Carbon, 98, 41-49.
    Larsen, E. S. (1929). The Temperature of Magmas. American Mineralogist, 14, 81-94.
    Lattard, D., Engelmann, R., Kontny, A., & Sauerzapf, U. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effect of composition, crystal chemistry, and thermomagnetic methods. Journal of Geophysical Research, 111, B12S28.
    Lee, C. T. A., Luffi, P., Plank, T., Dalton, H., & Leeman, W. P. (2009). Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279, 20-33.
    Levi, S., & Merrill, R. T. (1978). Properties of single-domain, pseudo-single-domain, and multidomain magnetite. Journal of Geophysical Research: Solid Earth, 83(B1), 309-323.
    Li, X., Lu, W., Song, Y. M., Wang, Y. X., Chen, A. Y., Yan, B., Yoshimura, S., & Saito, H. (2016). Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy. Scientific Reports, 6, 22467.
    Lopez, J. A., Gonzalez, F., Bonilla, F. A., Zambrano, G., & Gomez, M. E. (2010). Synthesis and Characterization of Fe3O4 Magnetic Nanofluid. Revista Latinoamericana de Metalurgia y Materials, 30(1), 60-66.
    McEnroe, S. A., Robinson, P., & Panish, P. T. (2000). Chemical and petrographic characterizationof ilmenite and magnetite in oxide-rich cumulates of the Sokndal Region, Rogaland, Norway. NGU Bulletin, 436, 49-56.
    McEnroe, S. A., Harrison, R. J., Jackson, M. J., Hirt, A. M., Robinson, P., Langenhorst, F., Heidelbach, F., Kasama, T., Putnis, A., & Brown, L. L. (2005). Lamellar magnetism: effects of interface versus exchange interactions of nanoscale exsolutions in the ilmenite-hematite system. Journal of Physics: Conference Series, 17, 154-167.
    Moskowitz, B. M. (1980). Theoretical grain size limits for single-domain, pseudo- single-domain and multi-domain behavior in titanomagnetite (x= 0.6) as a function of low-temperature oxidation. Earth and Planetary Science Letters, 47(2), 285-293.
    Moskowitz, B.M., Jackson, M., & Kissel, C. (1998). Low temperature magnetic behaviour of titanomagnetites. Earth and Planetary Science Letters, 157, 141-149.
    Mudvarthi, C., Na, S. M., Schaefer, R., Laver, M., Wuttig, M., & Flatau, A. B. (2010). Magnetic domain observations in Fe-Ga alloys. Journal of Magnetism and Magnetic Materials, 322(14), 2023-2026.
    Murdock, K. J., Wilkie, K., & Brown, L. L. (2013). Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El’gygytgyn, Russia Far East. Climate of the Past, 9, 467-479.
    Murphy, P., & Frick, L. (2006). Titanium, in Kogel, J. E., Trivedi, N. C., Barker, J. M., and Krukowski, S. T., eds. Industrial minerals and rocks (7th ed.): Littleton, Colo., Society for Mining, Metallurgy, and Exploration, Inc., 987-1003.
    Muxworthy, A. R., & Williams, W. (2006). Observations of viscous magnetization in multidomain magnetite. Journal of Geophysical Research, 111, B01103.
    Nagata, T. (1961). Rock Magnetism. Maruzen Ltd, pp. 350.
    Nagata, T., Ishikawa, J., Kinoshita, H., Kono, M., Syono, Y., & Fisher, R. (1970). Magnetic properties and natural remanent magnetization of lunar material. Proceedings of the Apollo 11 Lunar Science Conference, 3, 2325-2340.
    Nagata, T. (2013). Identification of Magnetic Minerals in Rocks Using Methods Based on their Magnetic Properties. Developments in Solid Earth Geophysics, 3, 501-513.
    Nowaczyk, N. R. (2011). Dissolution of titanomagnetite and sulphidization in sediments from Lake Kinneret, Israel. Geophysical Journal International, 187(1), 34-44.
    O’Donovan, J., & O’Reilly, W. (1977). The preparation, characterization and magnetic properties of synthetic analogues of some carriers of the palaeomagnetic record. Journal of Geomagnetism and Geoelectricity, 29(4), 331-344.
    Oiu, F., Ren, W., Tian, G. Y., & Gao, B. (2017). Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel. Journal of Magnetism and Magnetic Materials, 432, 250-259.
    O’Reilly, W. (1984). Rock and Mineral Magnetism. Springer Us, pp. 220.
    Ort, M. H., Porreca, M., & Geissman, J. W. (2015). The use of palaeomagnetism and rock magnetism to understand volcanic processes: introduction. Geological Society, London, Special Publication, 396, 1-11.
    Ouyang, T. P., Tang, Z. H., Zhao, X., Tian, C. T., Ma, J. L., Wei, G. J., Huang, N. S., Li, M. K., & Bian, Y. (2015). Magnetic mineralogy of a weathered tropical basalt, Hainan Island, South China. Physics of Earth and Planetary Interiors, 240, 105-113.
    Pang, K. N., Zhou, M. F., Lindsley, D., Zhao. D G., & Malpas, J. (2008). Origin of Fe-Ti oxide ores in mafic intrusions: evidence from the Panzhihua intrusion, SW China. Journal of Petrology, 49, 295-313.
    Perfiliev, Y. D., & Sharma, V. K. (2008). Higher oxidation states of iron in solid state: synthesis and their Mössbauer characterization. ACS Publications, 112-123.
    Pokhil, T. G., & Moskowitz, B. M. (1997). Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy. Journal of Geophysical Research, 102(B10), 22681-22694.
    Price, G. D. (1980). Exsolution microstructures in titanomagnetites and their magnetic signifinance. Physics of the Earth and Planetary Interiors, 23(1), 2-12.
    Price, G. D. (1981). Subsolidus phase relations in the titanomagnetite solid solution series. American Mineralogist, 66, 751-758.
    Ragland, P. C. (1989). Basic Analytical Petrology. Oxford University Press, pp. 369.
    Ramdohr, P. (1953). Ulvospinel and its significance in titaniferous iron ores. Economic Geology, 48, 677-688.
    Richard, J., O’Donovan, J., Hauptman, Z., O’Reilly, W., & Creer, K. (1973). A magnetic study of titanomagnetite substituted by magnesium and aluminium. Physics of the Earth and Planetary Interiors, 7(4), 437-444.
    Righter, K., Keller, L. P., Rahman, Z., & Christoffersen, R. (2012). Exsolution of Iron-Titanium Oxides in Magnetite in Miller Range (MIL) 03346 Nakhlite: Evidence for Post Crystallization Reduction in the Nakhlite Cumulate Pile. American Mineralogist, 99(11-12), 2417.
    Righter, K., Keller, L. P., Rahman, Z., & Christoffersen, R. (2014). Redox‐driven exsolution of iron‐titanium oxides in magnetite in Miller Range (MIL) 03346 nakhlite; evidence for post crystallization oxidation in the nakhlite cumulate pile? American Mineralogist, 99, 2313-2319.
    Roberts, A. P., Almeida, T. P., Church, N. S., Harrison, R. J., Heslop, D., Li, Y., Li, J., Muxworthy, A. R., Williams, W., & Zhao, X. (2017). Resolving the Origin of Pseudo-Single Domain Magnetic Behavior. Journal of Geophysical Research: Solid Earth, 122, 9534-9558.
    Robinson, P., Harrison, R.J., McEnroe, S.A., & Hargraves, R.B. (2002). Lamellar magnetism in the haematite-ilmenite series as an explanation fro strong remanent magnetization. Nature, 418, 517-520.
    Robinson, P., Harrison, R.J., McEnroe, S.A., & Hargraves, R.B. (2004). Nature and origin of lamellar magnetism in the hematite-ilmenite series. American Mineralogist, 89, 725-747.
    Samavat, F., Ali, E. H. Shahmaleki, S., & Solgi, S. (2012). Growth of KCl1-xBrx Mixed Crystals with Different Composition Percent and Study of KBr Concentration Effect on Optical Characteristics of Mixed Crystals. Advances in Materials Physics and Chemistry, 2, 85-89.
    Schult, A. (1970). Effect of pressure on the Curie temperature of titanomagnetites [(1-x)Fe3O4 - xTiFe2O4]. Earth and Planetary Science Letters, 10(1), 81-86.
    Shaar, R., & Feinberg, J. M. (2013). Rock magnetic properties of dendrite: insights from MFM imaging and implications for paleomagnetic studies. Geochemistry, Geophysics, Geosystems, 14(2), 407-421.
    Shau, Y. H., Torii, M., Horng, C. S., & Peacor, D. R. (2000). Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg 83: Implications for the timing of magnetization. Journal of Geophysical Research,105(B10), 23635-23649.
    Shau, Y. H., Torii, M., Horng, C. S., & Liang, W. T. (2004). Magnetic properties of mid-ocean-ridge basalts from Ocean Drilling Program Leg 187. Pedersen, R.B., Christie, D.M., and Miller, D.J. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 187, 1-25.
    Smith, J. V. (2002). Structural analysis of flow-related textures in lavas. Earth-Science Reviews, 57(3-4), 279-297.
    Song, H. Z., Li, Y. X., Zhao, K. Y., Zeng, H. R., Hui, S. X., Li, G. R., Yin, Q. R., & Wu, G. H. (2009). Influence of stress on the magnetic domain structure in Fe81Ga19 alloys. Journal of Applied Physics, 105, 013913.
    Sonnette, L., Lee, J. C., & Horng, C. S. (2017). The arcuate fold-and-thrust belt of northern Taiwan: Results of a two-stage rotation revealed from a paleomagnetic study. Journal of Asian Earth Sciences, 147, 284-309.
    Spaldin, N. A., & Mathur, N. D. (2003). Magnetic Mineral: Fundamentals and Device Applications. Physics Today, 56(12), 62-63.
    Stacey, F. D. (1962). A generalized theory of thermoremanence, covering the transition from single domain to multi-domain magnetic grains. Philosophical Magazine, 7(83), 1887-1900.
    Stacey, F. D., & Banerjee, S. K. (1974). The Physical Principles of Rock Magnetism. Elsevier, pp. 206.
    Stankovic, N., Recnik, A., & Daneu, N. (2016). Topotaxial, reactions during oxidation of ilmenite single crytal. Journal of Materials Science, 51, 958-968.
    Tan, W., Liu, P., HE, H., Wang, C. Y., & Liang, X. (2016). Mineralogy and origin of exsolution in Ti-rich magnetite from different magmatic Fe-Ti oxide-bearing intrusions. The Canadian Mineralogist, 54, 539-553.
    Tanaka, H., & Yamamoto, Y. (2014). Microscopic observation of titanomagnetite grains during palaeointensity experiments of volcanic rocks. Geophysical Journal International, 196(1), 145-159.
    Tanikawa, W., Mishima, T., & Hirono, T. (2008). High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu faultin Taiwan. Earth and Planetary Science Letters, 272, 372-381.
    Tarling, D. H. (1983). Palaeomagnetism: Principles and Applications in Geology, Geophysics and Archaeology. Chapman and Hall Ltd, pp. 392.
    Tauxe, L. (2010). Essentials of Paleomagnetism. University of California Press. pp. 512.
    Teng, L. S., Wang, Y., Tang, C. H., Huang, C. Y., Huang, T. C., Yu, M. S., & Ke, A. (1991). Tectonic aspect of the Paleogene depositional basin of northern Taiwan. Proceedings of the Geological Society of China, 34, 313-336.
    Thompson, R., & Oldfield, F. (1986). Environmental Magnetism. Allen & Unwin, London, pp. 227.
    Urrutia-Fucugauchi, J., Trigo-Huesca, A., & Perez-Cruz, L. (2012). Magnetic links among lava flows, tuffs and the underground plumbing system in a monogenetic volcano, derived from magnetics and paleomagnetic studies. Physics of the Earth and Planetary Interiors, 212-213, 10-18.
    Ushioda, M., Takahashi, E., Hamada, M., & Suzuki, T. (2014). Water content in arc basaltic magma in the Norhteast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt. Earth, Planets and Space, 66, 127.
    Van Velzen, A. J., & Zijderveld, J. D. A. (1992). A method to study alterations of magnetic minerals during thermal demagnetization applied to a fine-grained marine marl (Trubiformation, Sicily). Geophysical Journal International, 110, 79-90.
    Vasin, A. S., Oliveira, F., Cerqueira, M. F., Schulze, J., & Vasilevskiy, M. I. (2018). Structural and vibrational properties of SnxGe1-x: Modeling and experiments. Journal of Applied Physics, 124, 035105.
    Velímský, J., Šachl, L., & Martinec, Z. (2019). The global toroidal magnetic field generated in the Earth’s oceans. Earth and Planetary Science Letters, 509, 47-54.
    Ventura, G., De Rosa, R., Colletta, E., & Mazzuoli, R. (1996). Deformation patterns in a high-viscosity lava flow inferred from the crystal preferred orientation and imbrication structure: an example from Salina (Aeolian Islands, southern Tyrrhenian Sea, Italy). Bulletin of Volcanology, 57(7), 555-562.
    Vine, F. J., & Matthews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199(4897), 947-949.
    Vine, F. J., & Wilson, J. T. (1965). Magnetic anomalies over a young oceanic ridge off Vancouver Island. Science, 150(3695), 485-489.
    Vine, F. J. (1966). Spreading of the Ocean Floor: New Evidence. Science, 154(3755), 1405-1415.
    Von Gruenewaldt, G., Klemm, D. D., Henckel, J., & Dehm, R. M. (1985). Exsolution features in titanomagnetites from massive magnetite layers and their host rocks of the upper zone, eastern Bushveld Complex. Economic Geology, 80(4), 1049-1061.
    Wang, Z. H., Chen, K., Zhou, Y., & Zeng, H. Z. (2005). MFM studies of microstructure and magnetic properties of iron films prepared by sputtering. Ultramicroscopy, 105, 343-346.
    Wang, K. L., Chung, S. L., Lo, Y. M., Lo, C. H., Yang, H. J., Shinjo, R., Lee, T. Y., Wu, J. C., & Huang, S. T. (2012). Age and geochemical characteristics of paleogene basalts drilled from western Taiwan: Records of initial rifting at the southeastern Eurasian continental margin. Lithos, 155, 426-441.
    Wang, T., Chen, Y., Wang, Z., & Sun, Z. Z. (2015). Magnetization Dynamics of a Single-domain Magnet Under a Spin-polarized Current with a Tilted Polarization. Physics Procedia, 75, 1003-1010.
    Watkins, N. D., & Paster, T. P. (1971). The magnetic properties of igneous rocks from the ocean floor. Philosophical Transactions of The Royal Society A, 268, 507-550.
    Wei, J. D., Knittel, I., Lang, C., Schuler, D., & Hartmann, U. (2011). Magnetic properties of single biogenic magnetite nanoparticles. Journal of Nanoparticle Research, 13, 3345-3352.
    Williams, W., & Dunlop, D. J. (1989). Three-dimensional micromagnetic modelling of ferromagnetic domain structure. Nature, 337(6208), 634-637.
    Williams, W., Muxworthy, A. R., & Paterson, G. A. (2006). Configurational anistropy in single-domain and pseudosingle-domain grains of magnetite. Journal of Geophysical Research, 111, B12S13.
    Wu, X., Steinle-Neumann, G., Narygina, O., Kantor, I., McCammon, C., Pascarelli, S., Aquilanti, G., & Prakapenka, V. (2009). Iron oxidation state of FeTiO3 under high pressure. Physical Review B, 79094106-1~094106-7.
    Xiao, J., Nasr-El-Din, H. A., & Al-Bagoury, M. (2013). Evaluation of ilmenite as a Weighting Material in Oil-based Drilling Fluids for HPHT Applications. Society of Petroleum Engineers, SPE-165184-MS.
    Xu, W., De Voo, R. V., Peacor, D. R., & Beaubouef, R. T. (1997). Alteration and dissolution of fine-grained magnetite and its effects on magnetization of the ocean floor. Earth and Planetary Science Letters, 151(3), 279-288.
    Yan, Y., Shen, L., Chen, Y., Bao, S., Thong, Z., & Yu, H. (2014). A MYB-Domain Protein EFM Mediates Flowering Responses to Environmental Cues in Arabidopsis. Developmental Cell, 30(4), 437-448.
    Yang, H. Y. (1977). Primary Oxidation Of Fe-Ti Oxide Minerals In The Basaltic Sills Of The Shihmen Reservoir Area, Northern Taiwan. Proceedings of the Geological Society of China, 20, 8-15.
    Yen, T. P. (1958). Cenozoic volcanic activity in Taiwan. Taiwan Mining Industry, 10(1-2), 1-39.
    Yen, T. P. (1965). Some geological and petrological features of the Penghu basalts. Proceedings of the Geological Society of China, 8, 52-60.
    Yen, T. P. (1987). Geology of the Penghu Islands. Bulletin of Geophysics, 27-28, 1-44.
    Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
    Zboril, R., Mashlan, M., & Petridis, D. (2002). Iron(III) Oxide from Thermal Process-Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications. Chemistry of Materials, 14, 969-982.
    Zhang, G., & Ostrovski, O. (2002). Effect of preoxidation and sintering in properties of ilmenite concentrates. International Journal of Mineral Processing, 64(4), 201-218.
    Zhang, Y. F., Chen, H. K., Marron, J. A., Brown, D., Lin, A. T. S., Xie, Z., & Jin, X. (2020). Imaging active faulting in the western Taiwan Strait. Scientific Reports, 10, 3703.
    Zheng, Z., Liu, Y. Z., & Wu, F. T. (1985). The numerical simulation for the trend of geological structure foliation and high stress area in Taiwan Province (Chinese, English Sum.). Earthquake Research in China, 1(1), 48-55.
    Zheng, Y. F., Chen, Y. X., Dai, L. Q., & Zhao, Z. F. (2015). Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China Earth Sciences, 58, 1045-1069.
    Zhou, X. H., & Armstrong, R. L. (1982). Cenozoic volcanic rocks of eastern China-secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters, 58, 301-329.
    Zinin, P., Tatsumi-Petrochilos, L., Bonal, L., Acosta, T., Hammer, J., Gilder, S., & Fuller, M. (2011). Raman spectroscopy of titanomagnetites: Calibration of the intensity of Raman peaks as a sensitive indicator for their Ti content. American Mineralogist, 96, 1537-1546.

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE