| 研究生: |
羅君豪 Luo, Chun-Hao |
|---|---|
| 論文名稱: |
澎湖玄武岩之巨觀與微觀磁特性研究 Study on macro- and micro-magnetism in basaltic rocks in Penghu Islands of Taiwan |
| 指導教授: |
陳燕華
Chen, Yen-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 磁性礦物 、玄武岩 、鈦磁鐵礦 、磁力顯微鏡 |
| 外文關鍵詞: | magnetic mineral, basaltic rocks, single-domain, multi-domain, natural remanent magnetism |
| 相關次數: | 點閱:150 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自然界中的磁性礦物可以紀錄其形成時的古地磁強度以及方向,不過岩石中多元的礦物相以及化學組成,可能使得古地磁的記錄更加複雜化。許多著名的天然磁學研究充分地解釋了地球磁場的形成、磁性礦物種類以及不同岩石之間的磁特性,卻發現一些影響岩石磁特性的因素會控制於微小的礦物甚至於內部的磁結構。因此本研究希望搭配高解析電子顯微鏡、磁力顯微鏡等微觀技術,來輔助分析一些巨觀尺度下觀察到的磁異常現象。本研究以臺灣澎湖群島玄武岩為例,初步的自然殘磁以及磁感率的測定發現矽質玄武岩的殘磁方向和強度相對穩定;鹼性玄武岩在熱退磁的過程中沒有穩定的殘磁方向,且退磁溫度點較低,不過卻有相當高的磁感率。結果顯示:矽質玄武岩的氧化程度較鹼性玄武岩高,且有觀察到鈦磁鐵礦氧化偏析產生鈦鐵礦,其成分相對較複雜。不過由於矽質玄武岩含有較多次微米級的鈦磁鐵礦,因此所含的單磁區比例高,且這些單磁區礦物之殘磁方向具有較高的一致性。反之鹼性玄武岩雖然只含有鈦磁鐵礦而相對單純,不過其多磁區訊號比例較高,且單磁區的殘磁方向分布不一致,因此導致在巨觀上呈現不穩定的殘磁特性。殘磁穩定的矽質玄武岩中還有觀察到多磁區有順向排列甚至被拉張的情形,且方向是和其噴發年代時的大地應力有著正相關。透過多磁區結構可以比較出熱擾動以及外加應力之間的影響規模,以及輔助證明了澎湖群島在停止噴發後的確是處在穩定的被動大陸邊緣。因此認為在古地磁領域,磁力顯微鏡是可以提供不一樣的觀察結果;其對磁區的構建能力可以在古地磁或地質領域貢獻新的輔助應用。
Rock magnetic properties such as stability of remanent magnetization, magnetic coercivity, and magnetic susceptibility are controlled by the properties of magnetic minerals. Therefore, understanding mineral magnetism is crucially important to interpret rock magnetic properties. Basaltic rocks have been generally regarded as reliable recorders to record past geomagnetic natures and behaviors. Despite this recognition, we can still observe that some of the basaltic rocks do not display good recorder for the paleomagnetism. Here we study two types of basaltic rocks collected from the Penghu islands in Taiwan, which show that alkali basalt compared with tholeiitic basalt has relatively high magnetic susceptibility but rather an unstable remanent magnetization. From results, we know that there are two kind of magnetic minerals in tholeiitic basalt from calibration line of XRD and have higher degree of oxidation. However, the higher ratio of single-domain causes the stable NRM, and the results of MFM also can respond to the results of thermal decay. Conversely, there is only one kind of magnetic minerals in alkali basalt, but the higher ratio of multi-domain causes the unstable NRM. Besides, the results of MFM are agreed with the results of macro-magnetic analysis if the remanent magnetic direcion is very stable.
參考文獻
李宗展 (1993)。澎湖玄武岩中裂隙及氣孔填充礦物之特性分析,國立成功大學地球科學研究所碩士論文,共89頁。
李寄嵎 (1994)。澎湖地區玄武岩類與福建地區基性脈岩之定年學與地球化學研究兼論中生代晚期以來中國東南地函之演化,國立臺灣大學地質學研究所博士論文,共226頁。
林朝棨、邱岳、呂學俊、黃敦友 (1957)。澎湖群島之地質礦產,臺灣礦業第9卷,第3-4期,第26-38頁。
邱詠恬 (2008)。利用GPS觀測資料探討宜蘭平原之現金地殼變形,國立臺灣大學地質科學研究所碩士論文,共90頁。
周新民、陳圖華 (1981)。我國東南沿海新生代玄武岩的成分和演化特徵,地質學報,第1期,第29-40頁。
俞何興 (1989)。東海盆地-其地質架構及地體構造歷史,臺灣大學海洋學刊,第24期,第23-38頁。
徐閔儀 (2006)。台灣北部震間地殼變形: 1995-2005年GPS觀測,國立成功大學地球科學研究所碩士論文,共114頁。
張中杰、劉一峰、張素芳 (2009)。南海北部珠江口-瓊東南盆地地殼速度結構與幾何分段,地球物理學報,52(10),第2461-2471頁。
莊文星 (1988)。臺灣新生代晚期火山岩之定年與地球化學研究,國立臺灣大學海洋研究所博士論文,共231頁。
莊文星 (1999)。臺灣之火山活動與火成岩,國立自然科學博物館,共324頁。
莊文星 (2000)。臺灣澎湖、綠島與蘭嶼火山頸地質景觀,中國地質學會89年年會暨學術研討會手冊及論文摘要,第174-176頁。
陳培源、張郇生 (1995)。澎湖群島之地質與地史,澎湖縣政府文化局,共239頁。
欒錫武、張亮 (2009)。南海構造演化模式:綜合作用下的被動擴張,海洋地質與第四紀地質,29(6),第59-74頁。
Akbar, S., Hasanain, S. K., Azmat, N. & Nadeem, M. (2004). Synthesis of Fe2O3 nanoparticles by new Sol-Gel method and their structural and magnetic characterizations. Journal of Applied Sciences Research, 3(3), 417-433.
Almeida, T. P., Kasama, T., Muxworthy, A. R., Williams, W., Nagy, L., Hansen, T. W., Brown, P. D., & Dunin-Borkowski, R. E. (2014). Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetites particles. Nature Communications, 5, 5154.
Anand, R. R., & Gilkes, R. J. (1984). Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite. Journal of Soil Science, 35, 559-567.
Angelier, J., Bergerat, F., Chu, H. T., Juang, W. S., & Lu, C. Y. (1990). Paleostress analysis as a key to margin extension: The Penghu Islands, South China Sea. Tectonophysics, 183(1-4), 161-176.
Bailey, S. W., Weege, R. J., Cameron, E. N., & Spedden, H. R. (1956). The alteration of ilmenite in beach sands. Economic Geology, 51(3), 263-279.
Banerjee, S. K., & Moskowitz, B. M. (1985). Ferrimagnetic properties of magnetites. In J. K. Kirschvink, D. S. Jones and B. J. MacFadden (Eds.), Magnetite Biomineralization and Magnetoreception in Organisms, Plenum, New York, 17-41.
Bascou, J., Raposo, M. I. B., Vauchez, A., & Egydio-Silva, M. (2002). Titanohematite lattice-preferred orientation and magnetic anisotropy in high-temperature mylonites. Earth and Planetary Science Letters, 198, 77-92.
Boiron, T., Bascou, J., Camps, P., Ferre, C. E., Maurice, C., Guy, B., Gerbe, C. M., & Launeau, P. (2013). Internal structure of basalt flows: insights from magnetic and crystallographic fabrics of the La Palisse volcanics, French Massif Central. Geophysical Journal International, 193(2), 585-602.
Bozorth, R. M. (1993). Ferromagnetism. Ferromagnetism, by Richard M. Bozorth, pp. 992.
Brownlee, S. J., Feinberg, J. M., Kasama, T., Harrison, R. J., Scott, G. R., & Renne, P. R. (2011). Magnetic properties of ilmenite-hematite single crystals from the Ecstall pluton near Prince Rupert, British Columbia. Geochemistry, Geophysics, Geosystems, 12(9), 1525-2027.
Buddington, A., & Lindsley, D. (1964). Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5(2), 310-357.
Burton, B. P. (1991). The interplay of chemical and magnetic ordering. Reviews in Mineralogy and Geochemistry, 25, 303-321.
Burton, B. P., Robinson, P., McEnroe, S. A., Fabian, K., & Ballaran, T. B. (2008). A low-temperature phase diagram for ilmenite-rich compositions in the system Fe2O3-FeTiO3. American Mineralogist, 93(8-9), 1260-1272.
Butler, R.F., & Banerjee, S.K. (1975). Theoretical single-domain grain-size range in magnetite and titanomagnetite. Journal of Geophysical Research, 80(29), 4049-4058.
Butler, R. F. (1992). Paleomagnetism: magnetic domains to geologic terranes. Boston: Blackwell Scientific Publications.
Byrne, T., & Liu, C. S. (1992). Geology and geophysics of an arc-continent collision, Taiwan. Geological Society ofAmerica Special Paper. Geological Society of America,Boulder, CO, 358.
Callister, W. D. (2009). Materials Science and Engineering: An Introduction. John Wiley and Sons, pp. 992.
Chen, J. C. (1973). Geochemistry of basalts from Penghu Islands. 50th Anniversary Geological Society of China, 1(16), 23-36.
Chou, Y. M., Song, S. R., Aubourg, C., Lee, T. Q., Boullier, A. M., Song, Y. F., Yeh, E. C., Kuo, L. W., & Wang, C. Y. (2012). An earthquake slip zone is a magnetic recorder. Geology, 40(6), 551-554.
Chung, S. L., & Sun, S. S. (1992). A new magnetic model for the East Taiwan Ophiolite and it’s implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters, 109, 133-145.
Chung, S. L., Sun, S. S., Tu, K., Chen, C. H., & Lee, C. Y. (1994). Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology, 112, 1-20.
Claramunt, S., Wu, Q., Maestro, M., Porti, M., Gonzalez, M. B., Martin-Martinez, J., Campabadal, F., & Nafria, M. (2015). Non-homogeneous conduction of conductive filaments in Ni/HfO2/Si resistive switching structures observed with CAFM. Microelectronic Engineering, 147(1), 335-338.
Cloete, M., Hart, R. J., Schmid, H. K., Drury, M., Demanet, C. M., & Sankar, K. V. (1999). Characterization of magnetite particles in shocked quartz by means of electron- and magnetic force microscopy: Vredefort, South Africa. Contrib Mineral Petrol, 137, 232-245.
Cromwell, G., Tauxe, L., Staudigel, H., & Ron, H. (2015). Paleointensity estimates from historic and modern Hawaiian lava floes using glassy basalt as a primary source material. Physics of the Earth and Planetary Interiors, 241, 44-56.
Day, R., Fuller, M., & Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Physics of the Earth and Planetary Interior, 13(4), 260-267.
De Groot, B. M., & De Groot, L. V. (2019). A low-cost device for measuring local magnetic anomalies in volcanic terrain. Geoscientific Instrumentation, Methods and Data Systems, 8, 217-225.
De Groot, L. V., Fabian, K., Bakelaar, I. A., & Dekkers, M. J. (2014). Magnetic force microscopy reveals meta-stable magnetic domain states that prevent reliable absolute palaeointensity experiments. Nature Communications, 5, 4548.
De Groot, L. V., Fabian, K., Beguin, A., Reith, P., Barnhoorn, A., & Hilgenkamp, H. (2018). Determining Individual Particle Magnetizations in Assemblages of Microngrains. Geophysical Research Letters, 45(7), 2995-3000.
Dietze, F., Kontny, A., Heyde, I., & Vahle, C. (2011). Magnetic anomalies and rock magnetism of basalts from Reykjanes (SW-Iceland). Studia Geophysica et Geodaetica, 55(1), 109-130.
Dunlop, D. J. (1981). The rock magnetism of fine particles. Physics of the Earth and Planetary Interior, 26(1-2), 1-26.
Dunlop, D. J. (1990). Developments in rock magnetism. Reports on Progress in Physics, 53(6), 707-792.
Dunlop, D. J. (1998). Thermoremanent magnetization of nonuniformly magnetized grains. Journal of Geophysical Research: Solid Earth, 103(B12), 30561-30574.
Engelmann, R., Kontny, A., & Lattard, D. (2010). Low‐temperature magnetism of synthetic Fe‐Ti oxide assemblages. Journal of Geophysical Research, 115, B12107.
Fabian, K., & Hubert, A. (1999). Shape-induced pseudo-single-domain remanence. Geophysical Journal International, 138(3), 717-726.
Fabian, K. (2006). Approach to saturation analysis of hysteresis measurements in rock magnetism and evidence for stress dominated magnetic anisotropy in young mid-ocean ridge basalt. Physics of the Earth and Planetary Interiors, 154, 299-307.
Fabian, K., McEnroe, S. A., Robinson, P., & Shcherbakov, V. (2008). Exchange bias identifies lamellar magnetism as the origin of the natural remanent magnetization in titanohematite with ilmenite exsolution from Modum, Norway. Earth and Planetary Science Letters, 268, 339-353.
Feinberg, J. M., Scott, G. R., Renne, P. R., & Wenk, H. R. (2005). Exsolved magnetite inclusions in silicates: Features determining their remanence behavior. Geology, 33, 513-516.
Feinberg, J. M., Harrison, R. J., Kasama, T., Dunin-Borkowski, R. E., Scott, G. R., & Renne, P. R. (2006). Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: An electron holography study. Journal of Geophysical Research, 111, B12S15.
Frandsen, C., Stipp, S. L. S., McEnroe, S. A., Madsen, M. B., & Knudsen, J. M. (2004). Magnetic domain structure and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Physics of Earth and Planetary Interiors, 141(2), 121-129.
Fu, X., Wang, Y., & Wei, F. (2010). Phase Transitions and Reaction Mechanism of Ilmenite Oxidation. Metallurgical and Materials Transactions A, 41, 1338-1348.
Fujimoto, K., & Kikawa, E. (1989). Alteration of Titanomagnetites and Its Related Magnetic Properties in the Noya Geothermal Area, Central Kyushu, Japan. Journal of Geomagnetism and Geoelectricity, 41, 39-64.
Gavagnin, M., Wanzenboeck, H. D., Belic, D., Shawrav, M. M., Persson, A., Gunnarsson, K., Svedlindn, P., & Bertagnolli, E. (2014). Magnetic force microscopy study of shape engineered FEBID iron nanostuctures. Physics Status Solidi A, 211(2), 368-374.
Ge, K., & Liu, Q. (2014). Effects of the grain size distribution on magnetic properties of magnetite: constraints from micromagnetic modeling. Chinese Science Bulletin, 59(34), 4763-4773.
Goguichaichvili, A., Pozzo, A. L. M., Rocha-Fernandez, J. L., Urrutia-Fucugauchi, J., & Soler-Arechalde, A. M. (2009). Paleomagnetic and rock-magnetic study on volcanic units of the Valsequillo Basin: implications for early human occupation in central Mexico. Earth Planets Space, 61, 205-211.
Gomez, A., Avila, A., & Hinestroza, J. P. (2010). Surface charge estimation on hemispherical dielectric samples from EFM force gradient measurements. Journal of Electronstatics, 68(1), 79-84.
Goulart, A. T., Fabris, J. D., De Jesus Filho, M. F., Coey, J. M. D., Da Costa, G. M., & De Grave, E. (1998). Iron Oxides in a Soil Developed from Basalt. Clays and Clay Minerals, 46(4), 369-378.
Goswami, A., Alam, K. M., Kumar, P., Kar, P., Thundat, T., & Shankar, K. (2020). Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning prode microscopy. Carbohydrate Polymers, In Press, Journal Pre-proof, 116393.
Grachev, A. F., Pechersky, D. M., & Tsel’movich, V. A. (2011). Titanomagnetites and Ilmenites from the Early Cenozoic Basalts and Limburgites of the Northern Tien Shan. Physics of the Solid Earth, 47(6), 475-487.
Grey, I. E., & Reid, A. F. (1975). The structure of pseudorutile and its role in the natural alteration of ilmenite. American Mineralogist, 60, 898-906.
Gunnlaugsson, H. P., Helgason, O., Kristjansson, L., Nornberg, P., Rasmussen, H., Steinporsson, S., & Weyer, G. (2006). Magnetic properties of olivine basalt: Application to Mars. Physics of Earth and Planetary Interior, 154(3-4), 276-289.
Guo, X., Wang, Y. T., Zhao, D. G., Jiang, D. S., Zhu, J. J., Liu, Z. S., Wang, H., Zhang, S. M., Qiu, Y. X., Xu, K., & Yang, H. (2010). Microstructure and strain analysis of GaN epitaxial films using in-plane grazing incidence x-ray diffraction. Chinese Physics B, 19(7), 076804.
Haggerty, S. E. (1976). Opague mineral oxides in terrestrial igneous rocks. In: Rumble, D. III (ed.) Oxide Minerals Reviews in Mineralogy, 3, Mineralogical Society of America, Chantilly, VA, 101-300.
Haggerty, S. E. (1991). Oxide textures - a mini-atlas. In: Lindsley, D. H. (ed.) Oxide Minerals: their Petrologic and Magnetic Significance. Reviews in Mineralogy, 25, Mineralogical Society of America, Chantilly, VA, 29-220.
Halgedah, S. & Fuller, M. (1983). The dependence of magnetic domain structure upon magnetization state with emphasis upon nucleation as a mechanism for pseudo- single-domain behavior. Journal of Geophysical Research: Solid Earth, 88(B8), 6505-6522.
Hasegawa, T., Pei, W., Wang, T., Fu, Y., Washiya, T., Saito, H., & Ishio, S. (2008). MFM analysis of the magnetization process in L10–A1 FePt patterned film fabricated by ion irradiation. Acta Materialia, 56(7), 1564-1569.
Hayasaka, I. (1933). Geologic data about the Boko Islands, Taiwan. Tigaku Kizi, 4, 73-78.
Hayes, D. E. (1988). Age-depth relationships and depth anomalies in the southeast Indian Ocean and South Atlantic Ocean. Journal of Geophysical Research, 94(B4), 2937-2954.
Ho, K. S., Chen, J. C., Smith, A. D., & Juang, W. S. (2000). Petrogenesis of two groups of pyroxenite from Tungchihsu, Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China. Chemical Geology, 167, 355-372.
Horng, C. S., Laj, C., Lee, T. Q., & Chen, J. C. (1992). Magnetic characteristics of sedimentary rocks from the Tsengwen-chi and Erhjen-chi sections in southwestern Taiwan. Terrestrital, Atmospheric and Oceanic Sciences, 3(4), 519-532.
Horng, C. S., Torii, M., Shea, K. S., & Kao, S. J. (1998). Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164, 467-481.
Hsieh, H. H., Chen, C. H., Lin, P. Y., Yen, H. Y. (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90, 26-33.
Hsu, I-C., Kienzle, J., Scharon, L., & Sun, S. S. (1966). Paleomagnetic Investigation of Taiwan Igneous Rocks. Bulletin of The Geological Survey of Taiwan, 17, pp.81.
Huang, X. W., Su, B. X., Zhou, M. F., Gao, J. F., & Qi, L. (2017). Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity. Lithos, 282-283, 215-227.
Hunt, C. P., Moskowitz, B. M., & Banerjee, S. K. (1995a). Magnetic properties of rocks and minerals, in Rock Physics and Phase Relations: A Handbook of Physical Constants. American Geophysical Union, 189-204.
Ibragimov, Sh. Z., & Zakirov, T. R. (2016). Homogenization of titanomagnetites with magnetite-ulvospinel exsolution structures according to the thermomagnetic data: Modeling and experiment. Izvestiya, Physics of the Solid Earth, 52, 297-304.
Iglesias, V., Wu, Q., Porti, M., Nafria, M., Bersuker, G., & Cordes, A. (2015). Monitoring defects in III–V materials: A nanoscale CAFM study. Microelectronic Engineering, 147(1), 31-36.
Jahn, B. M., Chen, P. Y., & Yen, T. P. (1976). Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geological Society of America Bulletin, 86(5), 763-776.
Jia, P., Chen, L., Rao, J., Wang, Y., Meng, Q., & Zhou, Y. (2017). Evolution of Phase, Microstructure and ZrC Lattice Parameter in Solid-solution-treaded W-ZrC Composite. Scientific Reports, 7, 6531.
Jiang, W. T., Horng, C. S., Roberts, A. P., & Peacor, D. R. (2001). Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters, 193(1-2), 1-12.
Juang, W. S., & Chen, J. C. (1992). Geochronology and geochemistry of Penghu basalts, Taiwan Strait and their tectonic significance. Journal of Southeast Asian Earth Sciences, 7(2-3), 185-193.
Kao, S. J., Horng, C. S., Roberts, A. P., & Liu, K. K. (2004). Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology, 203, 153-168.
Kawamura, N., Kawamura, K., & Ishikawa, N. (2008). Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench. Earth Planets Space, 60, 179-189.
Klein, C., & Hurlburt, C. S. (1993). Manual of Mineralogy. John Wiley and Sons Inc., New York, pp. 681.
Kletetschka, G., Wasilewski, P. J., Taylor, P. T. (2002). The role of hematite-ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data. Tectonophysics, 347, 167-177.
Kozlovsky, Y. A. (1987). Magnetic Properties of Rocks. In: Kozlovsky Y.A. (eds) The Superdeep Well of the Kola Peninsula. Exploration of the Deep Continental Crust. Springer, Berlin, Heidelberg, pp. 368-377.
Kumar, R., Varandani, D., & Mehta, B. R. (2016). Nanoscale interface formation and charge transfer in graphene/silicon Schottky junctions; KPFM and CAFM studies. Carbon, 98, 41-49.
Larsen, E. S. (1929). The Temperature of Magmas. American Mineralogist, 14, 81-94.
Lattard, D., Engelmann, R., Kontny, A., & Sauerzapf, U. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effect of composition, crystal chemistry, and thermomagnetic methods. Journal of Geophysical Research, 111, B12S28.
Lee, C. T. A., Luffi, P., Plank, T., Dalton, H., & Leeman, W. P. (2009). Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279, 20-33.
Levi, S., & Merrill, R. T. (1978). Properties of single-domain, pseudo-single-domain, and multidomain magnetite. Journal of Geophysical Research: Solid Earth, 83(B1), 309-323.
Li, X., Lu, W., Song, Y. M., Wang, Y. X., Chen, A. Y., Yan, B., Yoshimura, S., & Saito, H. (2016). Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy. Scientific Reports, 6, 22467.
Lopez, J. A., Gonzalez, F., Bonilla, F. A., Zambrano, G., & Gomez, M. E. (2010). Synthesis and Characterization of Fe3O4 Magnetic Nanofluid. Revista Latinoamericana de Metalurgia y Materials, 30(1), 60-66.
McEnroe, S. A., Robinson, P., & Panish, P. T. (2000). Chemical and petrographic characterizationof ilmenite and magnetite in oxide-rich cumulates of the Sokndal Region, Rogaland, Norway. NGU Bulletin, 436, 49-56.
McEnroe, S. A., Harrison, R. J., Jackson, M. J., Hirt, A. M., Robinson, P., Langenhorst, F., Heidelbach, F., Kasama, T., Putnis, A., & Brown, L. L. (2005). Lamellar magnetism: effects of interface versus exchange interactions of nanoscale exsolutions in the ilmenite-hematite system. Journal of Physics: Conference Series, 17, 154-167.
Moskowitz, B. M. (1980). Theoretical grain size limits for single-domain, pseudo- single-domain and multi-domain behavior in titanomagnetite (x= 0.6) as a function of low-temperature oxidation. Earth and Planetary Science Letters, 47(2), 285-293.
Moskowitz, B.M., Jackson, M., & Kissel, C. (1998). Low temperature magnetic behaviour of titanomagnetites. Earth and Planetary Science Letters, 157, 141-149.
Mudvarthi, C., Na, S. M., Schaefer, R., Laver, M., Wuttig, M., & Flatau, A. B. (2010). Magnetic domain observations in Fe-Ga alloys. Journal of Magnetism and Magnetic Materials, 322(14), 2023-2026.
Murdock, K. J., Wilkie, K., & Brown, L. L. (2013). Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El’gygytgyn, Russia Far East. Climate of the Past, 9, 467-479.
Murphy, P., & Frick, L. (2006). Titanium, in Kogel, J. E., Trivedi, N. C., Barker, J. M., and Krukowski, S. T., eds. Industrial minerals and rocks (7th ed.): Littleton, Colo., Society for Mining, Metallurgy, and Exploration, Inc., 987-1003.
Muxworthy, A. R., & Williams, W. (2006). Observations of viscous magnetization in multidomain magnetite. Journal of Geophysical Research, 111, B01103.
Nagata, T. (1961). Rock Magnetism. Maruzen Ltd, pp. 350.
Nagata, T., Ishikawa, J., Kinoshita, H., Kono, M., Syono, Y., & Fisher, R. (1970). Magnetic properties and natural remanent magnetization of lunar material. Proceedings of the Apollo 11 Lunar Science Conference, 3, 2325-2340.
Nagata, T. (2013). Identification of Magnetic Minerals in Rocks Using Methods Based on their Magnetic Properties. Developments in Solid Earth Geophysics, 3, 501-513.
Nowaczyk, N. R. (2011). Dissolution of titanomagnetite and sulphidization in sediments from Lake Kinneret, Israel. Geophysical Journal International, 187(1), 34-44.
O’Donovan, J., & O’Reilly, W. (1977). The preparation, characterization and magnetic properties of synthetic analogues of some carriers of the palaeomagnetic record. Journal of Geomagnetism and Geoelectricity, 29(4), 331-344.
Oiu, F., Ren, W., Tian, G. Y., & Gao, B. (2017). Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel. Journal of Magnetism and Magnetic Materials, 432, 250-259.
O’Reilly, W. (1984). Rock and Mineral Magnetism. Springer Us, pp. 220.
Ort, M. H., Porreca, M., & Geissman, J. W. (2015). The use of palaeomagnetism and rock magnetism to understand volcanic processes: introduction. Geological Society, London, Special Publication, 396, 1-11.
Ouyang, T. P., Tang, Z. H., Zhao, X., Tian, C. T., Ma, J. L., Wei, G. J., Huang, N. S., Li, M. K., & Bian, Y. (2015). Magnetic mineralogy of a weathered tropical basalt, Hainan Island, South China. Physics of Earth and Planetary Interiors, 240, 105-113.
Pang, K. N., Zhou, M. F., Lindsley, D., Zhao. D G., & Malpas, J. (2008). Origin of Fe-Ti oxide ores in mafic intrusions: evidence from the Panzhihua intrusion, SW China. Journal of Petrology, 49, 295-313.
Perfiliev, Y. D., & Sharma, V. K. (2008). Higher oxidation states of iron in solid state: synthesis and their Mössbauer characterization. ACS Publications, 112-123.
Pokhil, T. G., & Moskowitz, B. M. (1997). Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy. Journal of Geophysical Research, 102(B10), 22681-22694.
Price, G. D. (1980). Exsolution microstructures in titanomagnetites and their magnetic signifinance. Physics of the Earth and Planetary Interiors, 23(1), 2-12.
Price, G. D. (1981). Subsolidus phase relations in the titanomagnetite solid solution series. American Mineralogist, 66, 751-758.
Ragland, P. C. (1989). Basic Analytical Petrology. Oxford University Press, pp. 369.
Ramdohr, P. (1953). Ulvospinel and its significance in titaniferous iron ores. Economic Geology, 48, 677-688.
Richard, J., O’Donovan, J., Hauptman, Z., O’Reilly, W., & Creer, K. (1973). A magnetic study of titanomagnetite substituted by magnesium and aluminium. Physics of the Earth and Planetary Interiors, 7(4), 437-444.
Righter, K., Keller, L. P., Rahman, Z., & Christoffersen, R. (2012). Exsolution of Iron-Titanium Oxides in Magnetite in Miller Range (MIL) 03346 Nakhlite: Evidence for Post Crystallization Reduction in the Nakhlite Cumulate Pile. American Mineralogist, 99(11-12), 2417.
Righter, K., Keller, L. P., Rahman, Z., & Christoffersen, R. (2014). Redox‐driven exsolution of iron‐titanium oxides in magnetite in Miller Range (MIL) 03346 nakhlite; evidence for post crystallization oxidation in the nakhlite cumulate pile? American Mineralogist, 99, 2313-2319.
Roberts, A. P., Almeida, T. P., Church, N. S., Harrison, R. J., Heslop, D., Li, Y., Li, J., Muxworthy, A. R., Williams, W., & Zhao, X. (2017). Resolving the Origin of Pseudo-Single Domain Magnetic Behavior. Journal of Geophysical Research: Solid Earth, 122, 9534-9558.
Robinson, P., Harrison, R.J., McEnroe, S.A., & Hargraves, R.B. (2002). Lamellar magnetism in the haematite-ilmenite series as an explanation fro strong remanent magnetization. Nature, 418, 517-520.
Robinson, P., Harrison, R.J., McEnroe, S.A., & Hargraves, R.B. (2004). Nature and origin of lamellar magnetism in the hematite-ilmenite series. American Mineralogist, 89, 725-747.
Samavat, F., Ali, E. H. Shahmaleki, S., & Solgi, S. (2012). Growth of KCl1-xBrx Mixed Crystals with Different Composition Percent and Study of KBr Concentration Effect on Optical Characteristics of Mixed Crystals. Advances in Materials Physics and Chemistry, 2, 85-89.
Schult, A. (1970). Effect of pressure on the Curie temperature of titanomagnetites [(1-x)Fe3O4 - xTiFe2O4]. Earth and Planetary Science Letters, 10(1), 81-86.
Shaar, R., & Feinberg, J. M. (2013). Rock magnetic properties of dendrite: insights from MFM imaging and implications for paleomagnetic studies. Geochemistry, Geophysics, Geosystems, 14(2), 407-421.
Shau, Y. H., Torii, M., Horng, C. S., & Peacor, D. R. (2000). Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg 83: Implications for the timing of magnetization. Journal of Geophysical Research,105(B10), 23635-23649.
Shau, Y. H., Torii, M., Horng, C. S., & Liang, W. T. (2004). Magnetic properties of mid-ocean-ridge basalts from Ocean Drilling Program Leg 187. Pedersen, R.B., Christie, D.M., and Miller, D.J. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 187, 1-25.
Smith, J. V. (2002). Structural analysis of flow-related textures in lavas. Earth-Science Reviews, 57(3-4), 279-297.
Song, H. Z., Li, Y. X., Zhao, K. Y., Zeng, H. R., Hui, S. X., Li, G. R., Yin, Q. R., & Wu, G. H. (2009). Influence of stress on the magnetic domain structure in Fe81Ga19 alloys. Journal of Applied Physics, 105, 013913.
Sonnette, L., Lee, J. C., & Horng, C. S. (2017). The arcuate fold-and-thrust belt of northern Taiwan: Results of a two-stage rotation revealed from a paleomagnetic study. Journal of Asian Earth Sciences, 147, 284-309.
Spaldin, N. A., & Mathur, N. D. (2003). Magnetic Mineral: Fundamentals and Device Applications. Physics Today, 56(12), 62-63.
Stacey, F. D. (1962). A generalized theory of thermoremanence, covering the transition from single domain to multi-domain magnetic grains. Philosophical Magazine, 7(83), 1887-1900.
Stacey, F. D., & Banerjee, S. K. (1974). The Physical Principles of Rock Magnetism. Elsevier, pp. 206.
Stankovic, N., Recnik, A., & Daneu, N. (2016). Topotaxial, reactions during oxidation of ilmenite single crytal. Journal of Materials Science, 51, 958-968.
Tan, W., Liu, P., HE, H., Wang, C. Y., & Liang, X. (2016). Mineralogy and origin of exsolution in Ti-rich magnetite from different magmatic Fe-Ti oxide-bearing intrusions. The Canadian Mineralogist, 54, 539-553.
Tanaka, H., & Yamamoto, Y. (2014). Microscopic observation of titanomagnetite grains during palaeointensity experiments of volcanic rocks. Geophysical Journal International, 196(1), 145-159.
Tanikawa, W., Mishima, T., & Hirono, T. (2008). High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu faultin Taiwan. Earth and Planetary Science Letters, 272, 372-381.
Tarling, D. H. (1983). Palaeomagnetism: Principles and Applications in Geology, Geophysics and Archaeology. Chapman and Hall Ltd, pp. 392.
Tauxe, L. (2010). Essentials of Paleomagnetism. University of California Press. pp. 512.
Teng, L. S., Wang, Y., Tang, C. H., Huang, C. Y., Huang, T. C., Yu, M. S., & Ke, A. (1991). Tectonic aspect of the Paleogene depositional basin of northern Taiwan. Proceedings of the Geological Society of China, 34, 313-336.
Thompson, R., & Oldfield, F. (1986). Environmental Magnetism. Allen & Unwin, London, pp. 227.
Urrutia-Fucugauchi, J., Trigo-Huesca, A., & Perez-Cruz, L. (2012). Magnetic links among lava flows, tuffs and the underground plumbing system in a monogenetic volcano, derived from magnetics and paleomagnetic studies. Physics of the Earth and Planetary Interiors, 212-213, 10-18.
Ushioda, M., Takahashi, E., Hamada, M., & Suzuki, T. (2014). Water content in arc basaltic magma in the Norhteast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt. Earth, Planets and Space, 66, 127.
Van Velzen, A. J., & Zijderveld, J. D. A. (1992). A method to study alterations of magnetic minerals during thermal demagnetization applied to a fine-grained marine marl (Trubiformation, Sicily). Geophysical Journal International, 110, 79-90.
Vasin, A. S., Oliveira, F., Cerqueira, M. F., Schulze, J., & Vasilevskiy, M. I. (2018). Structural and vibrational properties of SnxGe1-x: Modeling and experiments. Journal of Applied Physics, 124, 035105.
Velímský, J., Šachl, L., & Martinec, Z. (2019). The global toroidal magnetic field generated in the Earth’s oceans. Earth and Planetary Science Letters, 509, 47-54.
Ventura, G., De Rosa, R., Colletta, E., & Mazzuoli, R. (1996). Deformation patterns in a high-viscosity lava flow inferred from the crystal preferred orientation and imbrication structure: an example from Salina (Aeolian Islands, southern Tyrrhenian Sea, Italy). Bulletin of Volcanology, 57(7), 555-562.
Vine, F. J., & Matthews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199(4897), 947-949.
Vine, F. J., & Wilson, J. T. (1965). Magnetic anomalies over a young oceanic ridge off Vancouver Island. Science, 150(3695), 485-489.
Vine, F. J. (1966). Spreading of the Ocean Floor: New Evidence. Science, 154(3755), 1405-1415.
Von Gruenewaldt, G., Klemm, D. D., Henckel, J., & Dehm, R. M. (1985). Exsolution features in titanomagnetites from massive magnetite layers and their host rocks of the upper zone, eastern Bushveld Complex. Economic Geology, 80(4), 1049-1061.
Wang, Z. H., Chen, K., Zhou, Y., & Zeng, H. Z. (2005). MFM studies of microstructure and magnetic properties of iron films prepared by sputtering. Ultramicroscopy, 105, 343-346.
Wang, K. L., Chung, S. L., Lo, Y. M., Lo, C. H., Yang, H. J., Shinjo, R., Lee, T. Y., Wu, J. C., & Huang, S. T. (2012). Age and geochemical characteristics of paleogene basalts drilled from western Taiwan: Records of initial rifting at the southeastern Eurasian continental margin. Lithos, 155, 426-441.
Wang, T., Chen, Y., Wang, Z., & Sun, Z. Z. (2015). Magnetization Dynamics of a Single-domain Magnet Under a Spin-polarized Current with a Tilted Polarization. Physics Procedia, 75, 1003-1010.
Watkins, N. D., & Paster, T. P. (1971). The magnetic properties of igneous rocks from the ocean floor. Philosophical Transactions of The Royal Society A, 268, 507-550.
Wei, J. D., Knittel, I., Lang, C., Schuler, D., & Hartmann, U. (2011). Magnetic properties of single biogenic magnetite nanoparticles. Journal of Nanoparticle Research, 13, 3345-3352.
Williams, W., & Dunlop, D. J. (1989). Three-dimensional micromagnetic modelling of ferromagnetic domain structure. Nature, 337(6208), 634-637.
Williams, W., Muxworthy, A. R., & Paterson, G. A. (2006). Configurational anistropy in single-domain and pseudosingle-domain grains of magnetite. Journal of Geophysical Research, 111, B12S13.
Wu, X., Steinle-Neumann, G., Narygina, O., Kantor, I., McCammon, C., Pascarelli, S., Aquilanti, G., & Prakapenka, V. (2009). Iron oxidation state of FeTiO3 under high pressure. Physical Review B, 79094106-1~094106-7.
Xiao, J., Nasr-El-Din, H. A., & Al-Bagoury, M. (2013). Evaluation of ilmenite as a Weighting Material in Oil-based Drilling Fluids for HPHT Applications. Society of Petroleum Engineers, SPE-165184-MS.
Xu, W., De Voo, R. V., Peacor, D. R., & Beaubouef, R. T. (1997). Alteration and dissolution of fine-grained magnetite and its effects on magnetization of the ocean floor. Earth and Planetary Science Letters, 151(3), 279-288.
Yan, Y., Shen, L., Chen, Y., Bao, S., Thong, Z., & Yu, H. (2014). A MYB-Domain Protein EFM Mediates Flowering Responses to Environmental Cues in Arabidopsis. Developmental Cell, 30(4), 437-448.
Yang, H. Y. (1977). Primary Oxidation Of Fe-Ti Oxide Minerals In The Basaltic Sills Of The Shihmen Reservoir Area, Northern Taiwan. Proceedings of the Geological Society of China, 20, 8-15.
Yen, T. P. (1958). Cenozoic volcanic activity in Taiwan. Taiwan Mining Industry, 10(1-2), 1-39.
Yen, T. P. (1965). Some geological and petrological features of the Penghu basalts. Proceedings of the Geological Society of China, 8, 52-60.
Yen, T. P. (1987). Geology of the Penghu Islands. Bulletin of Geophysics, 27-28, 1-44.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
Zboril, R., Mashlan, M., & Petridis, D. (2002). Iron(III) Oxide from Thermal Process-Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications. Chemistry of Materials, 14, 969-982.
Zhang, G., & Ostrovski, O. (2002). Effect of preoxidation and sintering in properties of ilmenite concentrates. International Journal of Mineral Processing, 64(4), 201-218.
Zhang, Y. F., Chen, H. K., Marron, J. A., Brown, D., Lin, A. T. S., Xie, Z., & Jin, X. (2020). Imaging active faulting in the western Taiwan Strait. Scientific Reports, 10, 3703.
Zheng, Z., Liu, Y. Z., & Wu, F. T. (1985). The numerical simulation for the trend of geological structure foliation and high stress area in Taiwan Province (Chinese, English Sum.). Earthquake Research in China, 1(1), 48-55.
Zheng, Y. F., Chen, Y. X., Dai, L. Q., & Zhao, Z. F. (2015). Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China Earth Sciences, 58, 1045-1069.
Zhou, X. H., & Armstrong, R. L. (1982). Cenozoic volcanic rocks of eastern China-secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters, 58, 301-329.
Zinin, P., Tatsumi-Petrochilos, L., Bonal, L., Acosta, T., Hammer, J., Gilder, S., & Fuller, M. (2011). Raman spectroscopy of titanomagnetites: Calibration of the intensity of Raman peaks as a sensitive indicator for their Ti content. American Mineralogist, 96, 1537-1546.
校內:2025-08-31公開