簡易檢索 / 詳目顯示

研究生: 廖怡芬
Liao, Yin-Fen
論文名稱: 長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響
Effects of Long-Chain Alcohol Additives on the Physical Stability of Charged Catanionic Vesicles
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 106
中文關鍵詞: 陰陽離子界面活性劑離子對雙親分子陰陽離子液胞長碳鏈醇類
外文關鍵詞: catanionic vesicle, long-chain alcohol, ion pair amphiphile, catanionic surfactant
相關次數: 點閱:115下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本研究中,先將陰離子型界面活性劑十二烷基硫酸鈉(sodium dodecylsulfate, SDS)與陽離子型界面活性劑十六烷基三甲基溴化銨(hexadecyltrimethyl ammonium bromide, HTMAB)的水溶液混合,以形成離子對雙親分子(ion pair amphiphile, IPA)HTMA-DS的沈澱物,再由HTMA-DS與HTMAB,以強制的方式形成帶正電的陰陽離子液胞(catanionic vesicle)。並選擇高濃度HTMA-DS/HTMAB = 4 mM/2 mM及低濃度HTMA-DS/HTMAB = 0.2 mM/0.6 mM的混合系統,添加不同莫耳比率的正十六碳醇或正十八碳醇,以探討長碳鏈醇類對陰陽離子液胞物理穩定性的影響。
      粒徑分析結果顯示,於低濃度HTMA-DS/HTMAB混合系統中添加正十六碳醇或正十八碳醇,均可提升陰陽離子液胞的物理穩定性,而添加正十八碳醇的效果較佳。若於高濃度HTMA-DS/HTMAB混合系統中添加正十六碳醇或少量的正十八碳醇,則反而使液胞的穩定性變差。而添加3~5 mM的正十八碳醇,就可製備出較穩定的液胞分散液。然而添加正十六碳醇或正十八碳醇促進液胞物理穩定性的效果,都比不上添加膽固醇的效果顯著。界面電位的量測結果顯示,於高濃度或低濃度的HTMA-DS/HTMAB混合系統中添加正十六碳醇或正十八碳醇,皆可製備出帶正電的液胞。在低濃度混合系統中,於大部分的情況下則會同時出現帶負電的訊號,所占的強度則大都小於10%。由於無法僅由液胞的界面電位說明其物理穩定性,因此液胞雙層膜內的組成及排列對液胞的物理穩定性應具有很大的影響。此外,利用熱掃描卡量計法(differential scanning calorimetry, DSC)量測液胞雙層膜結構的相轉移溫度,發現添加正十八碳醇於高濃度HTMA-DS/HTMAB混合系統所形成的液胞,其相轉移溫度較高,這可能與液胞雙層膜分子間的作用力增加有關。

      In this study, the ion pair amphiphile (IPA), HTMA-DS, was obtained as precipitate first by mixing aqueous solutions of the anionic surfactant, sodium dodecylsulfate (SDS), and the cationic surfactant, hexadecyltrimethylammonium bromide (HTMAB). The IPA and HTMAB were then used to form positively charged catanionic vesicles by a forced approach. N-hexadecanol or n-octadecanol was added with various molar ratios in the high concentration HTMA-DS/HTMAB = 4 mM/2 mM and low concentration HTMA-DS/HTMAB = 0.2 mM/0.6 mM systems, in order to investigate the effects of long-chain alcohols on the physical stability of catanionic vesicles.
      Particle size analyses indicated that with the addition of n-hexadecanol or n-octadecanol in the low concentration HTMA-DS/HTMAB system, the physical stability of catanionic vesicles was enhanced, especially for the presence of n-octadecanol. When n-hexadecanol or low molar ratios of n-octadecanol were present in the high concentration HTMA-DS/HTMAB system, the vesicle stability became lower. By adding 3~5 mM n-octadecanol, then more stable vesicle dispersions could be prepared. However, the effect of n-hexadecanol or n-octadecanol on promoting the vesicle stability is less significant than that of cholesterol. Zeta potential measurements showed that positively charged vesicles could be obtained by adding n-hexadecanol or n-octadecanol in the low or high concentration HTMA-DS/HTMAB system. For the low concentration system, a negative charge signal was also detected in most cases but with the intensity always less than 10%. Since the physical stability of the vesicles could not be explained only by zeta potential data, the bilayer composition and packing of the vesicles appeared to have a strong influence on the vesicle stability. Moreover, differential scanning calorimetry (DSC) was applied to measure the phase transition temperature of the vesicle bilayer structure. A higher phase transition temperature was found for the vesicles prepared by adding n-octadecanol in the high concentration HTMA-DS/HTMAB system, which might be related to the enhanced molecular interactions in the vesicle bilayers.

    總目錄 摘要 I Abstract III 誌謝 V 總目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XV 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 3 第二章 文獻回顧 7 2-1帶電液胞 7 2-2磷脂質與陰陽離子界面活性劑的相轉移行為 8 2-3膽固醇的效應 10 2-4脂肪酸及脂肪醇的效應 12 第三章 實驗 18 3-1藥品 18 3-2實驗儀器及裝置 18 3-2-1超音波震盪分散裝置 18 3-2-2微脂粒擠壓器 19 3-2-3雷射光散射法粒徑分析儀 19 3-2-4界面電位分析儀 20 3-2-5功率補償式熱掃描卡量計 22 3-2-6超敏銳度熱差微卡測定裝置 22 3-2-7穿透式電子顯微鏡 22 3-3實驗方法 23 3-3-1陰陽離子界面活性劑的製備 23 3-3-2帶電陰陽離子液胞的製備 24 3-3-3粒徑分布的量測 24 3-3-4界面電位的量測 25 3-3-5相轉移溫度的量測及其樣品的製備 25 3-3-6穿透式電子顯微鏡的分析 26 第四章 結果與討論 35 4-1液胞的穩定性 35 4-1-1低濃度IPA 35 4-1-2高濃度IPA 44 4-2相轉移行為 50 4-2-1陰陽離子界面活性劑 50 4-2-2 DTMA-DS/膽固醇混合物 52 4-2-3液胞分散液 53 第五章 結論 93 參考文獻 95 自述 106

    Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., “The fusion of erythrocytes by fatty acids, esters, retinol and α-tocopherol,” Biochemical Journal, 136, 147-155, 1973.

    Ahn, T., Oh, D. B., Lee, B. C., and Yun, C. H., “Importance of phosphatidylethanolamine for the interaction of apocytochrome c with model   membranes containing phosphatidylserine,” Biochemistry, 39, 10147-10153, 2000.

    Andreasen, T. J., and McNamee, M. G., “Inhibition of ion permeability control  properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids,” Biochemistry, 19, 4719-4726, 1980.

    Bach, D., and Wachtel, E., “Thermotropic properties of mixtures of negatively charged phospholipids with cholesterol in the presence and absence of Li+ or Ca2+ ions,”Biochimica et Biophysica Acta, 979, 11-19, 1989.

    Bach, D., Borochov, N., and Wachtel, E.,“Phase separation of cholesterol in dimyristoyl phosphatidylserine cholesterol mixtures,” Chemistry and Physics of Lipids, 92, 71-77, 1998.

    Bhattatcharya, S., and Haldar, S.,“Interaction between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain -backbone linkage,” Biochimica et Biophysica Acta, 1467, 39-53, 2000.

    Blandamer, M. J., Briggs, B., Cullis, P. M., Green, J. A., Waters, M., and Soldi, G., “Differential scanning microcalorimetric study of vesicles in aqueous solutions formed by dimethyldioctadecylammonium bromide,”J. Chem.  Soc. Faraday Trans., 88, 3431-3434, 1992.

    Blandamer, M. J., Briggs, B., Cullis, P. M., Rawlings, B. J., and Engberts, J. B. F. N., “Vesicles-cholesterol interactions: effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC,” Physical Chemistry Chemical Physics, 5, 5309-5312, 2003.

    Blume, A.,“Thermotropic behavior of phosphatidylethanolamine -        phosphatidylcholine-cholesterol mixtures,” Biochemistry, 19, 4908 -4913, 1980.

    Borochov, N., Wachtel, E. J., and Bach, D., “Phase behavior of mixtures of cholesterol and saturated phosphatidylglycerols,”Chemistry and Physics of Lipids, 76, 85-92, 1995.

    Brown, M. F., and Seelig, J.,“Influence of cholesterol on the polar region of  phosphatidylcholineand and phosphatidylethanolamine bilayers,” Biochemistry, 17, 381-384, 1978.

    Carrion, F. J., Delamaza, A., and Parra, J. L., “The influence of ionic-strength and lipid bilayer charge on the stability of liposomes,” Journal of Colloid and Interface Science, 164, 78-87, 1994.

    Chien, C.-L., Yeh, S.-J., Yang, Y.-M., Chang, C.-H., and Maa, J.-R.,“Formation and encapsulation of catanionic vesicles,” J. Chin. Colloid and  Interface Soc., 24, 31-45, 2002.

    Chung, M.-H., and Chung, Y.-C.,“Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers,” Colloids and Surfaces B: Biointerfaces, 24, 111-121,2002.

    Chung, M.-H., Park, M.-J., Chun, B.-C., and Chung, Y.-C.,“Encapsulation and permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain,” Colloids and Surfaces B: Biointerfaces, 28 ,83-93, 2003.

    Chung, M.-H., Park, C., Chun, B.-C., and Chung, Y.-C., “Polymerized ion pair amphiphile vesicles with pH-sensitive transformation and controlled release property,” Colloids and Surfaces B: Biointerfaces, 34, 179-184, 2004.

    Cocera, M., Lopez, O., Pons, R., Amenitsch, H., and Maza, A. D. L.,“Effect of the electrostatic charge on the mechanism inducing liposome    solubilization: a kinetic study by synchrotron radiation SAXS,” Langmuir, 20, 3074-3079, 2004.

    Devaraj, G. N., Parakh, S. R., Devraj, R., Apte, S. S., Ramesh Rao, B., and Rambhau, D.,“Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol,” Journal of Colloid and Interface Science, 251, 360-365, 2002.

    Eliasz, A. W., Chapman, D., and Ewing, D. F., “Phospholipid phase transitions: effects of n-alcohols, n-monocarboxylicacids, phenylalkyl alcohols and quaternary ammonium compounds,” Biochimica et Biophysica Acta, 448, 220-230, 1976.

    Feitosa, E., Alves, F. R., Niemiec, A.,Oliveira, M. E. C. D. R., Castanheira, E. M. S., and Baptista, A. L. F.,“Cationic liposomes in mixed didodecyldimethylammonium bromide and dioctadecyldimethyl-ammonium bromide aqueous dispersions studied by differential scanning calorimetry, nile red fluorescence, and turbidity,” Langmuir, 22, 3579-3585, 2006a.

    Feitosa, E., Bonassi, N. M., and Loh, W., “Vesicle-micelle transition in mixtures of dioctadecyldimethylammonium chloride and bromide with nonionic and zwitterionic surfactants,” Langmuir, 22, 4512-4517, 2006b.

    Felger, P. L., “Lipofection: a high efficient, lipid-mediated DNA-transfection procedure,” Proc. Natl. Acad. Sci. U.S.A., 84, 7413-7417, 1987.

    Fonseca, M. J., van Winden, E.C.A., and Crommelin, D. J. A., “Doxorubicin induces aggregation of small negatively charged liposomes,” European Journal of Pharmaceutics and Biopharmaceutics, 43, 9-17, 1997.

    Fukuda, H., Kawata, K., and Okuda, H., “Bilayer-forming ion pair amphiphiles from single-chain surfactants,” Journal of American Chemical Society, 112, 1635-1637, 1990.

    Hammond, K., Reboiras, M. D., Lyle, I. G., and Jones, M. N.,“Characterisation of phosphatidylcholine/phosphatidylinositol sonicated vesicles: effects of phospholipid composition on vesicle size,” Biochimica et Biophysica Acta, 774, 19-25, 1984.

    Holmberg, K., Handbook of applied surface and colloid chemistry, John Wiley and Sons, 2001.

    Huang, Z., and Epand, R. M.,“Study of the phase behaviour of fully hydrated  saturated diacyl phosphatidylserine/fatty acid mixtures with 31P-NMR and calorimetry,” Chemistry and Physics of Lipids, 86, 161-169, 1997.

    Huang, T. H., Lee, C. W. B., Das Gupta, S. K., Blume, A., and Griffin, R. G., “A 13C and 2H nuclear magnetic resonance study of       phosphatidylcholine/cholesterol interactions: characterization of lipid-gel phases,”Biochemistry, 32, 13277-13287, 1993.

    Inoue, T., Yanagihara, S. I., Misono, Y., and Suzuki, M., “Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer:  saturated versus unsaturated fatty acids,” Chemistry and Physics of Lipids, 109, 117-133, 2001.

    Israelachvili, J. N., Intermolecular and surface forces, Academic Press: New York, 1992.

    Israelachvili, J. N., Mitchell, D. J., and Ninham, B. W., “Theory of self - assembly of hydrocarbon amphiphiles into micelles and bilayers,” J. Chem. Soc. Faraday Trans., 72, 1525-1568, 1976.

    Juban, T. T., Barenholz, Y., and Rubinstein, A., “Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes,”    Pharmaceutical Research, 21, 447-453, 2004.

    Kacperska, A., “DSC investigations of DDAB, DTAB, and DHAB vesicle aqueous solutions in presence of SDS,” Journal of Thermal Analysis and Calorimetry, 61, 63-67, 2000.

    Kaler, E. W., Murthy, A. K., Rodriguez, B. E., and Zasadzinski, A. N., “Spontaneous vesicle formation in aqueous mixtures of single-tailed  surfactants,” Science, 245, 1371-1374, 1989.

    Kantor, H. L., and Prestegard, J. H., “Fusion of phosphatidylcholine bilayer vesicles: role of free fatty acid,”Biochemistry, 17, 3592-3597, 1978.

    Keough, K. M. W., and Davis P. J., “Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines,” Biochemistry, 18, 1453-1459, 1979.

    Knight, C. G., Liposomes: from physical structure to therapeutic applications, Elsevier/North-Holland Biomedical Press: Amsterdam -New York-Oxford, 1981.

    Koynova, R. D., Tenchov, B. G., Quinn, P. J., and Laggner, P., “Structure and phase behavior of hydrated mixtures of L-dipalmitoylphosphatidylcholine and  palmitic acid. Correlations between structural rearrangements, specific volume changes and endothermic events,” Chemistry and Physics of Lipids, 48, 205-214, 1988.

    Langner, M., and Hui, S., “Effect of free fatty acids on the permeability of 1,2-dimyristoyl-snglycero-3-phosphocholine bilayer at the main phase transition,” Biochimica et Biophysica Acta, 1463, 439-447, 2000.

    Lasic, D. D., Liposomes: from physics to applications, Elsevier: New York, 1993.
    Lentz, B. R., Barrow, D. A., and Hoechli, M., “ Cholesterol -phosphatidylcholine interactions in multilamellar vesicles,”Biochemistry, 19, 1943-1954, 1980.

    Mabrey, S., and Sturtevant, J. M.,“Investigation of phase transitions of    lipids and lipid mixtures by high sensitivity differential scanning calorimetry,” Biochemistry, 73, 3862-3866, 1976.

    Mabrey, S., and Sturtevant, J. M., “Incorporation of saturated fatty acids   into phosphatidylcholine bilayers,” Biochimica et Biophysica Acta, 486, 444-450, 1977.

    Mabrey, S., Mateo, P. I., and Sturtevant, J. M., “High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphophatidylcholines,” Biochemistry, 17, 2464-2468, 1978.

    Macdonald, R. C., Macdonald, R. I., Menco, B. P. M., Takeshita, K., Subbarao N. K., and Hu, L. R., “Small-volume extrusion apparatus for preparation of large, unilamellar vesicles,” Biochimica et Biophysica Acta, 1061, 297-303,  1991.

    Marcsh, D., and Seddon, J. M., “Gel to invertd hexagonal (Lβ-HⅡ) phase transitions in phosphatidylethanolamine and fatty acid -phosphatidylcholine mixtures, demonstrated by 31-P-NMR spectroscopy and X-ray diffraction,”  Biochimica et Biophysica Acta, 690, 117-123, 1982.

    Marques, E. F., Khan, A., and Lindman, B., “A calorimetric study of the gel-  to-liquid crystal transition in catanionic surfactant vesicles,”Thermochimica Acta, 394, 31-37, 2002.

    McMullen, T. P. W., Lewis, N. A. H., and McElhaney, R. N., “Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines,” Biochemistry, 32, 516-522, 1993.

    McMullen, T. P. W., Lewis, N. A. H., and McElhaney, R. N., “Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers,” Biochimica et Biophysica Acta, 1416, 119-134, 1999.

    McMullen, T. P. W., Lewis, N. A. H., and McElhaney, R. N., “Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membrane,”Biophysical Journal, 79, 2056-2065, 2000.

    Menger, F. M., Binder, W. H., and Keiper, J. S., “Cationic surfactants with counterions of glucuronate glycosides,”Langmuir, 13, 3247-3250, 1997.

    Morgan, J. D., Johnson, C. A., and Kaler, E. W., “Polymerization of equilibrium vesicles,” Langmuir, 13, 6447-6451, 1997.

    New, R. R. C., Liposomes: a practical approach, Oxford University Press: New York, 1990.

    Ordway, R. W., Singer, J. J., and Walsh, J. V., “Direct regulation of ion channels by fatty acids,” Trends Neurosci., 14, 96-100, 1991.

    Pincet, F., Cribier, S., and Perez, E., “Bilayers of neutral lipids bear a small but significant charge,” European Physical Journal B, 11, 127-130, 1999.

    Pringle, M. J., and Miller K. W., “Differential effects on phospholipid phase transitions produced by structurally related long-chain alcohols,” Biochemistry, 18, 3314-3320, 1979.

    Schullery, S. E., Seder, T. A., Weinstein, D. A., and Bryant, D. A.,“Differential thermal analysis of dipalmitoyl-phosphatidylcholine-fatty acid mixtures,”Biochemistry, 20, 6818-6824, 1981.

    Seddon, J. M., “Structure of the inverted hexagonal (HⅡ) phase, and non-lamellar phase transitions of lipids,”Biochimica et Biophysica Acta, 1031, 1-69, 1990.

    Smiley, B. L., and Richmond, G. L.,“Alkyl chain ordering of asymmetric phosphatidylcholines adsorbed at a liquid-liquid interface,” Journal of Physical Chemistry B, 103, 653-659, 1999.

    Tondre, C., and Caillet, C., “Properties of the amphiphilc films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science, 93, 115-134, 2001.

    Torchilin, V. P., and Weissig, V., Liposomes: a practical approach, Oxford University Press: New York, 2003.

    Wetzker, R., Klinger, R., and Frunder, H., “Effects of fatty acid on activity and calmodulin binding at Ca2+-ATPase of human erythrocyte membranes, ” Biochimica et Biophysica Acta, 730, 196-200, 1983.

     Yen, S. J., Yang, Y. M., and Chang, C. H., “Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles,”Langmuir, 21, 6179-6184, 2005.

    Yokoyama, S., Inagaki, A., Imura, T., Ohkubo, T., Tsubaki, N., Sakai, H., and  Abe, M., “Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide,”Colloids and Surfaces B: Biointerfaces, 44, 204-210, 2005.

    王偉丞,“DPPC/DHDP混合微脂粒的物理穩定性之研究,” 國立成功大學化學工程學系碩 士論文,2001。

    李雅鈺,“含膽固醇之陰陽離子液胞穩定性及包覆行為的研究,” 國立成功大學化學工程 學系碩士論文,2004。

    吳國彰,“陰陽離子液胞穩定性及包覆/釋放行為的研究,” 國立成功大學化學工程學系 碩士論文,2006。

    林冠豪,“帶電的陰陽離子液胞之製備及物理穩定性研究,” 國立成功大學化學工程學系 碩士論文,2004。

    徐立銘,“陰陽離子液胞包覆行為之探討,” 國立成功大學化學工程學系碩士論文,   2002。

    陳柏瑋,“十六碳醇或白蛋白存在下之帶電陰陽離子液胞穩定性的探討,” 國立成功大學 化學工程學系專題報告,2005。

    葉紹任,“共溶劑對陰陽離子液胞穩定性的影響,” 國立成功大學化學工程學系碩士論  文,2003。

    鍾依玲,“陰/陽離子液胞自發性形成之探討,” 國立成功大學化學工程學系碩士論文, 2002。

    簡振龍,“陰/陽離子界面活性劑的混合增效作用之研究,” 國立成功大學化學工程學系 碩士論文,2000。

    下載圖示 校內:2007-07-21公開
    校外:2007-07-21公開
    QR CODE