| 研究生: |
吳詠弘 Wu, Yung-Hung |
|---|---|
| 論文名稱: |
可調變光譜LED光學引擎於光生物反應器之設計與測試 Design and testing of a LED light engine with visible spectrums modulated for photobioreactors (PBRs) |
| 指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | LED光學引擎 、光生物反應器 、微藻 、耦合透鏡 |
| 外文關鍵詞: | LED light engine, PBRs, microalgae, wavelength-modulated |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計一種新型波長可調變的LED光學引擎,用來改善傳統光生物反應器(photobioreactors, PBRs)所使用的單一波長光源。
此波長可調之光學引擎包含了R、G、B三原色及白光的LED光源、耦合透鏡和光纖。其中,耦合透鏡的設計是使用配光曲線映射法(LIDC Mapping)。配光曲線映射法可以利用光源與目標面的配光曲線之間角度映射來簡化傳統設計透鏡所需的計算式。所設計出的耦合透鏡,可以用來增加光源和光纖入口之間的耦合效率。一般而言,由於微藻對於溫度變化很敏感,而光源產生出的熱能會影響微藻的生長,所以需要另外提供空調維持環境溫度。因此,本研究設計並製作出可擺放在室外的光波長可調變之光學引擎,利用耦合透鏡使光線聚集進入光導中,並藉由光導傳遞到光生物反應器(PBRs)來培養微藻。
由實驗證實,在單位時間內,使用波長可調變LED光學引擎養殖,其微藻生物質量是使用LED白光組的1.66倍。因此,波長可調變LED光學引擎能提供任意微藻的理想光譜,使微藻在單位時間內的生物質量將能大幅增加。
The thesis present a novel full wavelength modulation LED (FWM-LED) light engine to improve traditional photobioreactors(PBRs) of single wavelength.
The FWM-LED light engine consists of RGBW LED light sources, coupling lens, and optical fibers. The coupling lens is designed using symmetrical luminous intensity distribution curves, LIDC Mapping, which computing light distribution curve and light energy mapping. This LIDC mapping method can simplify our design into correspondent with the LIDC angles of light sources and target. It is for fiber coupling lens, which is increasing the efficiency of coupling between entrance of fiber and RGBW light sources. In general, temperature could affect alga’s growth either, so providing air condition system to helping heat-dissipating is needed. Therefore, this study design and fabricate the FWM-LED light engine in outdoors then light would pass throughout the coupling lens. The bendable fiber could guide the light into the PBRs providing luminance.
Experimentally observed the biomass of case using FWM-LED light engine are 166% higher than the case only providing white light. Therefore, the FWM-LED light engine can provide spectrums near to the ideal for microalgae to enhance the biomass increasing remarkably in a unit period cultivation.
[1]. European commission “The impact of minimum 10% obligation for biofuel use in the EU-27 in 2010 on agricultural markets, impact assessment renewable energy roadmap,” European Commission (EC). Directorate-General For Agriculture and Rural Development, March 2007.
[2]. Js Kanel, SA Guelcher, “Method for rupturing microalgae cells,” US Patent 6000551, 1999.
[3]. HL Bijl, JH Wolf, A Schaap, JMJ Visser, “Preparation of microbial polyunsaturated fatty acid containing oil from pasteurized biomass,” US Patent 6727373, 2004.
[4]. T Yokochi, T Nakahara, T Higashihara, S Tanaka, T Yaguchi, “Microorganisms capable of producing highly unsaturated fatty acids and process for producing highly unsaturated fatty acids by using the microorganisms,” Us Patent 6582941, 2003.
[5]. NR Moheimani, “The culture Cocolithophorid Algae for carbon dioxide bioremediation,” PhD thesis, Murdoch University, 2005.
[6]. N. Adir, H. Zer, S. Shochat, “Ohad Photoinhibition – a historical perspective,” Photosynthesis Research 76, pp. 343–370, 2003.
[7]. C.-H. Hsieh, W.-T. Wu, “A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae,” Biochemical Engineering Journal, pp. 300-305, 2009.
[8]. http://www.energystar.gov/index.cfm?c=cfls.pr_cfls_lumens
[9]. D. Dye, J. Muhs, B. Wood, R. Sims, “Design and Performance of a Solar Photobioreactor Utilizing Spatial Light Dilution,” Jornal of Solar Energy Engineering, Vol. 133, No. 015001, pp. 1-7, 2011.
[10]. J-W. F. Zijffers, S. Salim, M. Janssen, J. Tramper, R. H. Wijffels, “Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor,” Chemical Engineering Journal, Vol. 145, pp. 316-327, 2008.
[11]. E. Ono, J.L. Cuello, “Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors,” Energy Oxford, pp. 1651-1657, 2004.
[12]. A. Richmond, “Handbook of microalgal culture: biotechnology and applied phycology, ” Journal of Applied Phycology, Vol. 16, pp. 159-160, 2004.
[13]. C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, “Photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Renewable and Sustainable Energy Review, Vol. 102, pp. 71–81, 2009.
[14]. B. Cheirsilp, S. Torpee, “Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation,” Bioresource Technology, Vol. 110, pp. 510–516, 2012.
[15]. T.H. Kim, Y. Lee, S.H. Han, S.J. Hwang, “The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment,” Bioresource Technology, Vol. 130, pp. 75-80, 2013.
[16]. http://www.zhagastandard.org/specifications/lightengine.html
[17]. Y. Ding, P.F. Gu, “Realization of uniform illumination through free-form reflector,” Journal of Optics, Vol. 27, No. 3, 2007.
[18]. Y. Ding Yi, P.F. Gu, W. Lu, Z.R. Zheng, “Construction of freeform reflector through numerical solutions to differential equations,” Journal of Zhejiang University, Vol. 41, No. 9, 2007.
[19]. Y. Ding, X. Liu, Z. R. Zheng, P. F.Gu, “Freeform LED lens for uniform illumination,” Optics Express, Vol. 16, No.17, pp.12958-12966, 2008.
[20]. Y. Ding, P. F. Gu, Z. R. Zheng, “The Freeform Reflector for Uniform Rectangular Illumination,” Japanese Journal of Applied Physics, Vol. 46, No. 12, pp. 7771-7773, 2007.
[21]. A. Timinger, J. Muschaweck, H. Ries, “Designing Tailored Free-Form Surfaces for General Illumination,” Proceedings of SPIE Vol. 5186 Design of Efficient Illumination Systems, pp.128-132, 2003.
[22]. A. Domhardt, U. Rohlfing, K. Klinger, K. Manz, D. Kooß, U. Lemmer, “Optical Design of LED-based Automotive Tail Lamps,” Nonimaging Optics and Efficient Illumination Systems IV, Proceeding of SPIE, Vol. 6670, No. 66700L, pp. 1-10, 2007.
[23]. A. Domhardt, U. Rohlfing, S. Weingaertner, “New Design Tools for LED Headlamps,” Optical Sensors, Proceedings of the SPIE, Vol. 7003, No. 70032C, pp. 1-10, 2008.
[24]. N. Shatz, J. Bortz , J. Matthews, P. Kim, “Advanced optics for LED flashlights,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 7059, pp. 70590D-1-12, 2008.
[25]. C.S. Maria, “Ray Tracing Formulas for Monoaxial Optical components,” Apply Optics, Vol. 22, No. 2, pp.354-360, 1983.
[26]. C.S. Maria, R.M. Echarri, “Ray Tracing Formulas for Monoaxial Optical Components: Vetorial Formulation,” Apply Optics, Vol. 29, No. 7, pp.1935-1939, 1986.
[27]. L.C. Robert, P. Thomas, C. Loren, “Distributed Ray Tracing,” Computer Graphics,Vol. 18, No. 3, pp.137-144, 1984.
[28]. P. Haschberger, O. Mayer, V. Tank, H. Dieti, “Ray tracing through an eccentrically rotating retro reflector used for path-length alteration in a new Michelson interferometer,” Journal of the Optical Society of America A, Vol. 18, No. 12, pp. 1991-2000, 1991.
[29]. P. Shirley, C. Wang, K. Zimmerman, “Monte Carlo Techniques for Direct Lighting Calculations,” ACM Transactions on Graphics, Vol. 15, No.1, pp.1-36, 1996.
校內:2023-12-31公開