簡易檢索 / 詳目顯示

研究生: 林心雁
Lin, Shin-Yen
論文名稱: Mg2-xCaxLaTaO6 (X=0 ~ 2.0)系之光致發光特性研究
Synthesis and photo-luminescence properties of Mg2xCaxLaTaO6 (X=0 ~ 2.0) based phosphors
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 146
中文關鍵詞: 螢光粉固態反應法鉭酸鹽
外文關鍵詞: Tantalates, Phosphor, Solid-state reaction
相關次數: 點閱:99下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用固態合成法製備鉭酸鹽類螢光體主體晶格材料,分別將三價稀土金屬離子(Re3+= Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Tm3+, Bi3+)等作為發光中心,並利用X光粉末繞射、掃描式電子顯微鏡、熱重分析與差分式掃描熱分析、紫外-可見光全反射光譜與光激發光光譜儀進行其結構與發光特性鑑定。探討Mg2LaTaO6和Ca2LaTaO6主體晶格結構與活化劑濃度如何影響發光特性。
    發射紅光之Eu3+所摻雜不同主體螢光體中,激發光譜並無太大變化;而摻Eu3+螢光體放射光譜顯示Eu3+離子均佔據由5D0→7F2電偶極躍遷主導的非反轉對稱格位,Ca2LaTaO6: Eu3+的發射光譜,Eu3+離子5D1 、5D2與5D3高能階躍遷放光能被偵測;在900 ~ 1450℃之間,Ca2LaTaO6: Eu3+的發光強度會隨著煆燒溫度上昇而提高;以Eu3+離子活化之強紅光新穎鉭酸鹽之鎂/鈣離子共摻發光可調變螢光粉,探討陽離子分別由鹼土金屬(Mg、Ca)組成其晶格場改變之影響,取Mg2LaTaO6:Eu3+最佳放射強度之添加濃度30mol%Eu,由放射光譜可知,Mg0.6Ca1.4LaTaO6:Eu3+為最佳化組成,其呈現最強的紅光放射。此外,當鎂/鈣莫耳比例為1:3時,Mg0.5Ca1.5LaTaO6:Eu3+為最佳化組成螢光粉色座標為(0.66, 0.34)。
    發射綠光之Tb3+摻雜的螢光體,高濃度Tb3+摻雜時,發光光譜間並無太大差異,而在低濃度Tb3+摻雜Mg2LaTaO6主體晶格時,發光光譜無Tb3+離子中5D3 高能階躍遷;而Ca2LaTaO6:Tb3+的色度座標可以從藍綠光偏移至綠光。
    近白光Dy3+離子、橘紅光Sm3+離子、藍光Tm3+離子、綠光Er3+與Bi3+離子,透過Mg2LaTaO6和Ca2LaTaO6兩個不同主體晶格結構,對照吸收光譜、激發光譜、發射光譜和衰減時間的差異性,觀察金屬離子與氧配位場特性、共價鍵結強弱和占據位置對稱性等,就稀土離子為活化劑所形成的發光中心,因為稀土離子6s5p外殼層的屏蔽作用,使得4f電子的躍遷不受結晶場的影響,因此大部分三價稀土離子摻雜的螢光體,其放射光譜基本上與自由態的稀土離子相同。

    The objet of this study is to search new oxide based phosphors. The M2La1-xRexTaO6 (M =Mg, Ca; Re = Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Tm3+, Bi3+ ) phosphors are synthesized by solid-state reaction process and then calcined at 1450℃for 8 h, the absorption and emission behaviors under excitation source around near-UV region were examined. By using Thermal Analysis, XRD, SEM, TEM and PL spectra, the characterization and photo-luminescent properties of prepared phosphors were well investigated.
    The characteristics of Mg2LaTaO6: Eu3+ and Ca2LaTaO6: Eu3+ phosphors were found to be dependent on the amounts of europium ions. The calcined powders emit bright red luminescence centered due to 5D0→7F2 electric dipole transition. The maximum PL intensity has been obtained for 30mol% concentration of Eu3+ in Mg2LaTaO6 and Ca2LaTaO6. In addition, PL intensity of the Ca2LaTaO6: Eu3+ increased with the formation temperature from 900 to 1450 ℃.
    By controlling the molar ratios of Mg / Ca and amount of Eu3+ ions, it can improve the photoluminescence properties of red emission phosphors. The intensity of 5D0→7F2 transition reaches a maximum when the relative ratio of Mg / Ca is 3:7. The CIE chromaticity coordinates were found to be (0.66, 0.34) for Mg0.5Ca1.5LaTaO6:Eu3+.
    No blue emission would be observed in Mg2LaTaO6: Tb3+ even at very low Tb3+ concentration. The blue emission due to relaxation from the 5D3 level is absent. Furthermore, rare earth Dy3+ (close to white emission), Sm3+ (reddish-orange emission)、Tm3+ (blue emission), Er3+ and Bi3+ (green emission) doped Mg(or Ca)2LaTaO6 materials are promising phosphor candidates. The influences of host lattice of Mg2LaTaO6 and Ca2LaTaO6 on spectroscopy of luminescent materials were the factors of crystal field, covalency effect and crystal structure. However, since rare- earth (RE) ions have numbers of efficient and narrow emission lines in the visible region, the position of which is insensitive to their matrices due to the shielding effect of outer 5s and 5p electrons.

    摘要……………………………………………………………………I Abstract………………………………………………………III 目錄…………………………………………………………………V 表目錄……………………………………………………………IX 圖目錄……………………………………………………………X 第一章 序論……………………………………………………1 1-1前言………………………………………………………1 第二章 理論機主與文獻回顧………………………………………2 2-1 螢光材料簡介……………………………………………………2 2-2固態材料中的光致發光……………………………………………3 2-2-1本質型發光(intrinsic luminescence)……………………3 2-2-2外質型發光(extrinsic luminescence)……………………3 2-2-2-1非侷限型(unlocalized type)發光材料…………………….4 2-2-2-2 侷限型(localized type)發光材料………………………4 2-3發光原理…………………………………………………………5 2-4 螢光體的組成與選擇………………………………………………6 2-5 影響發光效率的主要的因素……………………………………7 2-5-1主體晶格效應(Host efect)……………………………………7 2-5-2主體效應對活化劑發光性質的影響……………………………7 2-5-3螢光體活化劑離子濃度淬滅效應(Concentration quenching effect)……………………………………………………………8 2-5-4金屬離子間電子轉移的機制……………………………………8 2-5-5稀土離子價態轉換相關因素之研究……………………………9 2-6 稀土金屬離子的發光性…………………………………………9 2-7研究動機…………………………………………………………9 2-8 M2LaTaO6 (M:Mg2+, Ca2+) 晶體簡介…………………………10 第三章 實驗方法與步驟…………………………………………….20 3-1 實驗流程…………………………………………………………20 3-2化學藥品………………………………………………………20 3-3 成分與結構分析………………………………………………21 3-3-1 X光繞射分析(X-Ray Diffraction Analysis)……………21 3-3-2 掃瞄式電子顯微鏡(Scanning Electron Microscope)分析與EDS(Energy Dispersive Spectrometer)分析………………………21 3-3-3 熱差/熱重分析(differential thermal and thermogravimetry analysis, DTA-TGA)………………………21 3-4 發光性質測定……………………………………………21 3-4-1螢光光譜儀(Photoluminescene,PL)………………………21 3-4-2吸收光譜(Absorption Spectrometer)………………………22 3-4-3色度座標分析(Analysis of C.I.E Chromaticity Diagram……………………………………………………………22 第四章 結果與討論………………………………………………27 4-1 固相反應法合成 M2LaTaO6 ( M= Mg or Ca )……………27 4-1-1 熱重-熱差(DTA-TGA)分析…………………………………27 4-1-2 X光繞射(XRD)分析…………………………………………27 4-1-3 掃描式電子顯微鏡(SEM)分析………………………………28 4-1-4 吸收光譜(absorption spectrum)分析…………………28 4-1-5 結論……………………………………………………28 4-2 摻雜Eu3+離子螢光體…………………………………………36 4-2-1摻雜Eu3+濃度對結構的影響………………………………36 4-2-2 SEM分析………………………………………………………36 4-2-3光譜分析……………………………………………………36 4-2-3-1 吸收、激發與發射光譜………………………………36 4-2-3-2 煆燒溫度對發光影響……………………………………40 4-2-3-3 Eu3+摻雜濃度對發光的影響…………………………40 4-2-3-4光致發光的衰減現象..……………………………………41 4-2-4 結論…………………………………………………………42 4-3以固相反應法合成Mg2-xCaxLa0.7Eu0.3TaO6螢光粉…………58 4-3-1摻雜Ca2+濃度對結構的響……………………………………58 4-3-2 SEM表面形態分析……………………………………………58 4-3-3光譜分析………………………………………………………58 4-3-4 Ca2+摻雜濃度對光致發光的衰減現象……………………60 4-3-5 結論…………………………………………………………60 4-4 摻雜Tb3+離子螢光體………………………………………….68 4-4-1摻雜Tb3+濃度對結構的影響………………………………68 4-4-2 SEM分析……………………………………………………68 4-4-3 光譜分析…………………………………………………68 4-4-3-3 還原氣氛對Mg2LaTaO6:Tb3+螢光特性的影響…………70 4-4-4 Tb3+掺雜濃度對5D47F5的影響………………………70 4-4-5 結論…………………………………………………………71 4-5 摻雜Dy 3+離子螢光體…………………………………………89 4-5-1摻雜Dy 3+濃度對結構的影響………………………………89 4-5-2 激發、發射與吸收光譜……………………………………89 4-5-3 Dy3+摻雜濃度對發光的影響………………………………89 4-5-4 結論…………………………………………………………90 4-6 摻雜Sm 3+離子螢光體………………………………………99 4-6-1摻雜Sm 3+濃度對結構的影響…………………………………99 4-6-2激發、發射與吸收光譜………………………………………99 4-6-3 Sm3+摻雜濃度對發光的影響………………………………100 4-6-4結論…………………………………………………………101 4-7 摻雜Er 3+離子螢光體………………………………………109 4-7-1摻雜Er 3+濃度對結構的影響………………………………109 4-7-2吸收、激發與發射光譜………………………………………109 4-7-3 Er 3+摻雜濃度對發光的影響………………………………109 4-7-4結論…………………………………………………………109 4-8 摻雜Tm 3+離子螢光體…………………………………………117 4-8-1摻雜Tm 3+濃度對結構的影響………………………………117 4-8-2吸收、激發與發射光譜…………………………………….117 4-8-3 Tm 3+摻雜濃度對發光的影響………………………………117 4-8-4結論…………………………………………………………118 4-9 摻雜Bi 3+離子螢光體…………………………………………125 4-9-1摻雜Bi3+濃度對結構的影響………………………………125 4-9-2 Mg2La1-xBixTaO6螢光粉吸收、激發與放射光……………125 4-9-3 Bi3+摻雜濃度對發光強度的影響………………………126 4-9-4結論…………………………………………………………126 第五章 總結論……………………………………………………136 5-1發光特性分析……………………………………………………136 5-2結構分析…………………………………………………………137 參考文獻……………………………………………………………143

    1 楊素華 科學發展 358 71 (2002)。
    2 A. Baoa, C. Taob, and H. Yang, “Synthesis and luminescent properties of nanoparticles GdCaAl3O7:RE3+ (RE = Eu, Tb) via the sol–gel method”, J. Lumin., 126 (2007) 859-865.
    3劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華科技(2003)。
    4 J. Wu, and B. Yan, “Sol–gel composition of hybrid precursors to synthesize RExGd1−xAlO3: Eu3+ (RE = La, Y) phosphors”, J. Alloy Compd., 432 (2007) 293-297.
    5 楊俊英著,“電子產業用螢光材料之應用調查”,工研院 民國81年。
    6 R.C. Ropp, Design of Phosphors, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, chapter 8 (1991).
    7 G. Blasse and B. C.Grabmaier, Luminescence Material, Springer, Berlin (1994) p. 13
    8 G. Blasse, Structure and Bonding, vol. 76, Springer Verlag, Heidelberg
    9 C. S. Shi and Q. Su,The Chemistry and Physics of Abnormal Valency Rare Elements, Science Press, Beijing (1994)
    10 G. Blasse, “Handbook on the Physics and Chemistry of Rare Earths” Vol.4, North-Holland (1979) p.237.
    11 K. Toda, T Honma, and M. Sato, “Unusual concentration quenching of europium luminescence in new layered pervoskite compound, RbLa1-xEuxTaO7 (0≦x≦1)”, J. Lumin., 71 (1997) 71-75.
    12 I. Sokolska, S. Kück, and G. Dominiak-Dzil, “The up-conversion process in Ho3+ doped LiTaO3” J. Alloy Compd., 323-324 (2001) 273-278.
    13 H. Jiao, F. Liao, and X. Jing, “Luminescent Properties of Eu3+and Tb3+ Activated Zn3Ta2O8” J. Electrochemical Society, 150 (2003) H220-H224.
    14 T. Takayama, T. Katsumata, and S. Komuro,“Growth and characteristics of a new long afterglow phosphorescent yttrium tantalate crystal” J. Crystal Growth 275 (2005) e2013–e2017.
    15 S. Senthil Kumar, K.V.O. and Nair, J. James, “Mg2MTaO6 (M=Nd or La): a group of new pyrochlore oxides”J. of Solid State Chemistry 177 (2004) 3873–3878
    16 D. A. Skoog, D. M. West, Principles of Instrumental Analysis, New York, Holt, Reinhart & Winstin, (1971)
    17 R. B king Encyclopedia of Inorganic Chemistry, 4, Jojn Wieley&Sons(1994)
    18劉如熹和王健源,“白光發光二極體製作技術-21世紀人類的新曙光”,全華科技,
    p.2-14。
    19 K. Ramesha,L. Sebastian, and B. Eichhorn,“Perovskite and Pyrochlore Modifications of
    Pb2M nReO6: Synthesis, Structure, and Electronic Properties” Chem. Mater. 15,
    (2003), 668-674.
    20 T. Horikubi, H. Watanabe, and N. Kamegashira,“Structure of perovskite type compounds, ALaMnTaO6 (A=Sr, Ba)” J. Alloy Compd., 274 (1998) 122-127.
    21劉如熹、王建源,白光二極體製作技術21世紀人類新矚光,Ch.1-20
    22 R. C. ROOP, Luminescence and the solid, Amsterdam, Elsevier (1991)
    23 K. Ramesha, L. Sebastian, B. Eichhorn, and J. Gopalakrishnan, “Perovskite and Pyrochlore Modifications of Pb2MnReO6:Synthesis, Structure, and Electronic Properties” Chem. Mater. 2003, 15, 668-674.
    24 H. W. Eng, P. W. Barnes, and B. M. Auer, “Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family” J. Solid State Chem 175 (2003) 94-109.
    25 F. Shi, J. Meng, Y. Ren and Q. Su, “Structure, luminescence and magnetic properties of AgLnW2O8 (Ln = Eu, Gd, Tb, and Dy) compounds”, J. Phys. Chem. Solids, 59 (1998) 105.
    26 T. Igarashi, M. Ihara, T. Kusunoki and K. Ohno,“Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor”, Appl. Phys. Lett., 76 (2000)1549. 、B. S. Tsai, Y. H. Chang and Y. C. Chen,“Synthesis and luminescent properties of MgIn2-xGaxO4:Eu3+ phosphors”, Electrochem. Solid-State Lett., 8(7) (2005) H55.
    27 G. Blasse, “On the Eu3+ fluorenrence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+ – activated oxides ”, J. Chem. Phys., 45(7) (1966) 2356.
    28 M. Yu, J. Lin, Y. H. Zhou, S. B. Wang and H. J. Zhang, “Sol–gel deposition and luminescent properties of oxyapatite Ca2(Y,Gd)8(SiO4)6O2 phosphor films doped with rare earth and lead Ions”, J. Mater. Chem., 2002, 12, 86.
    29 G.Blasse and B.C.Grabmaier , “Luminescencnt Materials”, Springer Verlag , Berlin Heidelberg , p.100,(1994).
    30 J. Garcia Sole, L.E. Bausa and D. Jaque, “An introduction to optical Spectroscopy of Inorganic Solids”, John Wiley & Sons, Ltd, p.189, (2005).
    31 Qiang Su, Chemistry of Rare Earths, Henan Science & Technology Press, 1993 p. 311.
    32 Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang and C. S. Shi“Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation” J. Phys. D: Appl. Phys. 40 (2007) 1910–1914.
    33 S. Freed,“Spectra of ions in fields of various symmetry in crystals and solutions”, Rev. Mod. Phys., 14(1942) 105. C. K. Jørgensen and B. R. Judd,“Hypersensitive pseudoquadrupole transitions in lanthanides”, Mol. Phys., 8(1964)281.
    34 J. Blanc and D. L. Ross, “Polarized absorption and emission in an octacoordinate chelate of Eu3+”, J. Chem. Phys., 43 (1965) 1286. 57-60
    35 B. R. Judd, “Hypersensitive transitions in rare-earth ions”, J. Chem. Phys., 44 (1966) 839.
    36 W.C. Nieuwport, G. Blasse,Soild State Commum.4,227(1966).
    37 E.J. Kiss, H.A. Weakliem,Phys.Rev.Latters 15 457(1965).
    38 B. S. Tsai, Y. H. Chang, Y. C. Chen,“Preparation and luminescent characteristics of Eu3+-activated MgxZn1−xGa2O4 nanocrystals”J. Alloys Compds 407 (2006) 289–293.
    39 W.C. Nieuwport, G. Blasse,Soild State Commum.4,227(1966).
    40 E.J. Kiss, H.A. Weakliem,Phys.Rev.Latters 15 457(1965).
    41 J. Lin, Q. Su, H. Zhang and S. Wang,“Crystal structure dependence of luminescence of rare earth ions (Ce3+, Tb3+, Sm3+) in Y2SiO5”, Mater. Res. Bull., 31 (1996) 189-196.
    42李育群,鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國96年。
    43 R. Schmechel, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn, and H. V. Seggern,“Photoluminescence propertities of nanocrystalline Y2O3:Eu3+ in different environments”, Scripta Mater. 44 (2001) 1213.
    44 G. Blasse,“Energy transfer in oxiidic phosphors”, Philips Res. REP., 24 (1969) 131.
    45 S. Shionoya and W. M. Yen,“Phosphor Handbook”, CRC press (1999). D. L. Dexter, “A theory of sensitized luminescence in solids”, J. Chem. Phys. 21 (1953) 836.
    46 B. Henderson and G.F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford, (1989).
    47 B. DiBartolo,“Energy Transfer Process in Condensed Matter”,Plenum, New York (1984).
    48 G. Blasse, K. C. Bleijenberg and R. C. Powell, “Luminescence and Energy Transfer”, Springer-Verlag, New York(1980).
    49 S. Shionoya and W. M. Yen,“Phosphor Handbook”, CRC press (1999).
    50 Young-Il Kim, P.M. Woodward“Crystal structures and dielectric properties of ordered double perovskites containing Mg2+ and Ta5+”, J Solid State Chem 180 (2007) 2798–2807.
    51 G. Blasse, A.Bril, Philips Res.Repts22 (1967) 481.
    52 F. S. Kao, “A study on the luminescent properties of new green-emitting SrIn2O4:xTb phosphor” Materials Chemistry and Physics 76 (2002) 295–298.
    53 C. H. Kam and S. Buddhudu, “Luminescence and decay behaviour of Tb3+:ZrF4-BaF2-LaF3-YF3-AlF3-NaF optical glasses”,Physica B, 337 (2003)237.
    54 S. Shionoya and W. M. Yen,“Phosphor Handbook”, CRC press (1999).
    55 D. L. Dexter and J. H. Schulman, J. Chem. Phys.,22,(1954),1063.
    56 A. F. Andreeva and V. A. Ogorodnik, Phys. Status Solidi B, 117, (1983),K57.
    57 C.C. Yua,b, X.M. Liua, M. Yua,b, C.K. Lina, C.X. Lia, H. Wanga, J. Lin, “Enhanced photoluminescence of Ba2GdNbO6: Eu3+/Dy3+ phosphors by Li+ doping” J. Solid State Chem 180 (2007) 3058–3065.
    58 L. Nagli, D. Bunimovich, O. Gorodetsky and V. Molev,"The luminescenceproperties of Dy-doped figh silicate glass”, J. Non-cryst. Solids, 217 (1997) 208.
    59 B. Grobelna, M. Szabelski, K. Kledzik , A. M. Kłonkowski, “Luminescent properties of Sm(III) ions in Ln2(WO4)3 entrapped in silica xerogel” J. Non-Crystalline Solids 353 (2007) 2861–2866.
    60 K. Annapurna, R. N. Dwivedi, P. Kundu, S. Buddhudu, “Fluorescence properties of Sm3+: ZnCl2-BaCl2-LiCl glass” Mater. Res. Bull.,38 (2003) 429-436.
    61 G. Blass and G.J.Dirksen,"A simple luminescence experiment suggesting rare earth ion pairing in the fluorite structure”. J. Electrochem. Soc., 127 (4) (1980) 978.
    62 C.M. Nascimento and M.J.V. Bell, “Reverse saturable absorption in Er 3+ doped systems”, J. Non-Cryst. Solids, 348(2004) 90.
    63 R. Reisfeld, “Structure and Bounding”,Vol. 22, Springer-Verlag, New York (1975).
    64 C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Luthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov and A. F. Zerrouk,“Excitation of the thulium 1G4 level in various crystal hosts”, J. Lumin.,82(1999) 137.
    65 I. Avgin and D. L. Huber,“Fluorescence dynamics in 1D systems with phonon-assisted energy transfer”, J. Lumin., 83-84 (1999) 193.
    66 A.A. Setlur *, A.M. Srivastava, “The nature of Bi3+ luminescence in garnet hosts”, Optical Materials, 29 (2006) 410–415.
    67 A.M. Srivastava, Materials Research Bulletin 37 (2002) 745.
    68 A.A. Setlur, A. M. Srivastava ,optical materials 29 (2006) 410.

    下載圖示 校內:2011-07-08公開
    校外:2013-07-08公開
    QR CODE