簡易檢索 / 詳目顯示

研究生: 王廷軒
Wang, Ting-Xuan
論文名稱: 建構複雜搜尋任務與其子任務以改善網路搜尋和贊助商搜索廣告
Constructing Complex Search Task with Subtasks to Improve Web Search and Sponsored Search Advertising
指導教授: 盧文祥
Lu, Wen-Hsiang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 129
中文關鍵詞: 搜索目的複雜搜尋任務搜尋頁面廣告消費需求
外文關鍵詞: Search goal, complex search task, search engine advertising, consumption need
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網絡用戶通常在提交一個查詢詞之前,會有一個特定的搜索目標。然而,許多非專業的使用者不能正確地將他們的搜索目標轉化為適合的查詢詞。因此,了解查詢詞背後的搜索目標是改善搜索引擎非常重要的議題。在過去幾年,許多研究專注於將搜索目標加以分類,包括信息類,導覽類和交易類。然而,一個查詢詞可能會有一個以上的搜索目標,以至於只是粗略的將搜索目標分成三類是不足夠的,因此需要有更好的方法來具體的描述使用者查詢詞確切的搜索目標。
      近年來,互聯網用戶經常依靠搜索引擎來處理日常生活的各種任務,如婚禮策劃、旅遊規劃或求職。然而,傳統的搜索引擎往往將查詢詞視為可以由一個搜索目標來完成的簡單搜索任務。事實上,越來越多的查詢詞是基於複雜的任務,其中包含一個以上的子搜索任務,從而迫使用戶發出一連串的查詢。例如,要完成一個複雜的任務“準備婚禮”必須滿足多個子任務,如“買婚戒”,“準備婚禮場地”和“租用豪華轎車”。因此,要完成這一複雜的任務,用戶至少需要提交三個查詢詞。
      此外,我們觀察到,一個複雜的任務中的每個子任務可能觸發不同的消費需求。為了滿足各個子任務的消費需求,當一般的網頁搜尋結果未能滿足他們的消費需求時,用戶可能傾向點擊網頁搜索結果的贊助商廣告。近年來研究指出,有消費需求的用戶時在網上搜索時更有可能點擊廣告(相較於一般的網頁搜尋結果)。這表示理想的推薦廣告可以改善用戶的搜索體驗。然而,給定一個複雜的任務的查詢,傳統的搜索引擎通常不能夠提供合適的廣告以滿足所有從子任務衍生出的消費需求。
      為了提高廣告的效益,廣告推薦系統應優化建議廣告的消費率。然而、最近的一些研究只是集中在增加廣告的點擊率。提高廣告點擊率並不能準確反映該廣告是否真正觸發用戶內心的消費需求,而且可能不會增加消費率。事實上,一些用戶可能基於好奇心來點擊廣告,卻不會在被廣告的網站作任何的消費行為。因此,這表示有吸引力的廣告,應該要真正滿足用戶內心的消費需求,也會提高消費率和降低用戶的搜索時間。此外,廣告商也會獲得較大的利潤並因此創造一個用戶和廣告商雙贏的局面。就我們所知,我們是第一個處理針對複雜任務提供廣告的問題。
    為了幫助用戶更快完成他們的複雜搜尋任務,在本論文中,我們首先提出了一個基於查詢詞自動偵測用戶搜尋目的模型。接著,我們進一步建構複雜搜尋任務的結構,其結構包含複雜搜尋任務名稱和子搜尋任務。最後,我們將所建構的複雜搜尋任務,應用在廣告搜尋上,這種廣告模式可以同時推薦不同子任務的廣告,一次滿足用戶處理複雜任務所有可能的需求。我們在本研究中開發了一套雛型系統,希望可以幫助用戶有效的完成他們的複雜搜尋任務。

    Web users usually have a certain search goal before they submit a search query. However, many laypersons can’t transform their search goals into suitable queries. Thus, understanding original search goals behind a query is very important for search engines. In the past decade, many researches focus on classifying search goals behind a query into different search-goal categories, including informational, navigational, and transactional. In fact, there may be more than one search goal behind a certain query.
    In recent years, web users often rely on search engines to deal with real-life complex tasks, such as wedding planning, travel planning or job hunting. However, conventional search engines intuitively consider a search query as a simple search task that can be accomplished by a single search goal. In fact, more and more queries are driven by complex tasks which include more than one subtask to be accomplished and thus force users to issue a series of subtask queries. For example, the complex task “prepare wedding” consists of multiple subtasks such as “buy wedding ring,” “reserve wedding venue,” and “rent wedding limousine.” Therefore, to accomplish this complex task, the users need to submit at least three subtask queries.
    Furthermore, each subtask in a complex task may trigger a few consumption needs. To deal with subtasks consumption needs, users may try to seek sponsored ads when the web search results fail to fit their consumption needs. Guo and Agichtein (2010) mentioned that users searching on the web with consumption needs are more likely to click ads. Hillard et al. (2010) also pointed out that suggesting ideal ads may actually improve user search experience. However, given a complex task query, conventional search engines are usually not able to provide suitable ads covering the consumption needs derived from the subtasks of a complex search task.
    To enhance the advertiser’s revenue, sponsored search systems should optimize the conversion rate of recommended ads. Although some recent studies focus only on increasing the ad-click rate based on the click history data, however, improving ad-click rate may not accurately reflect if the clicked ads truly trigger users’ consumption needs, and may not increase the conversion rate. In fact, some users probably click an ad due to curiosity and will not engage in any consumption in the advertised website. When a user decides to purchase or reserve something, the user probably achieved a consumption need. Therefore, suggesting attractive ads, which fit the user’s true desires, will also improve the conversion rate and decrease the search time for users. Furthermore, for advertisers, a larger conversion rate with smaller click rate will optimize revenue and create a win-win situation. To the best of our knowledge, our work is the first to address the issue of complex task advertising, while the above previous works only focus on single task advertising.
    To help users to efficiently accomplish their complex search task, in this work, we first propose a search goal model based on the users’ search query. Then, we further propose a topic-event-based complex search task model to construct the structure of complex search tasks containing a complex task name and subtask names. Finally, based on our constructed complex task structures, we propose a consumption-need-based complex-task ad recommendation model. In this research work, we developed a prototype system task-aware integrated search engine to help users efficiently accomplish their complex search tasks.

    摘要 I ABSTRACT III 致謝 V TABLE OF CONTENTS VII LIST OF TABLES XI LIST OF FIGURES XIV CHAPTER 1 INTRODUCTION 1 1.1. Background 1 1.2. Motivation 4 1.3. Contributions 6 1.4. Organization of this Dissertation 7 CHAPTER 2 Related Research 8 2.1. Investigating Search Needs and Search Tasks 8 2.2. Analyzing and Modeling Complex Tasks 10 2.3. Improving Task-oriented Search-Result Ranking 11 2.4. Relevance-based Sponsored Search Advertising 12 2.5. Psychology-based Advertising 13 2.6. Utilizing Multiple Web Resources 14 CHAPTER 3 Identifying Popular Search Goals behind Search Queries to Improve Web Search Ranking 15 3.1. Observation and Main Idea 15 3.2. Popular-Search-Goal-based Search Model 17 3.2.1. Search-Result Snippet Classification 18 3.2.2. Search Goal Candidate Generation 21 3.2.3. Popular Search Goal Model 21 3.2.4. Search-Goal-based Ranking Model 27 3.3. Performance Evaluation 28 3.3.1. Experimental Setup 28 3.3.2. Experimental Result 29 3.4. Summary 32 CHAPTER 4 Generating Latent Structure of Topic-Event-based Complex Search Tasks 33 4.1. The Descriptions and Observations of Utilized Web Resources 33 4.1.1. Query Logs 33 4.1.2. Clicked Pages 35 4.1.3. Community Question Answering 36 4.1.4. Search Engine Result Page 39 4.1.5. Microblogs 40 4.1.6. The Distribution of Complex Task Names and Subtask Names in Web Resources 41 4.2. Topic-Event-Based Complex Search Task Model 43 4.2.1. System Architecture 43 4.2.2. Task-related Query Discovery 44 4.2.3. Subtask Name Identification 46 4.2.4. Complex Task Name Generation 49 4.3. Experiments 54 4.3.1. Dataset and Data Labeling 54 4.3.2. Performance of Task-Related Query Discovery 58 4.3.3. Performance of Subtask Name Identification 60 4.3.4. Performance of Complex Task Name Generation 63 4.4. Application 65 4.4.1. Query-Task Prediction 67 4.4.2. Complex-Task-based Search 67 4.4.3. Evaluation of Complex-Task-based Search Engine 70 4.4.4. Examples of Complex-Task-based Search Results 71 4.5. Summary 73 CHAPTER 5 Discover Consumption needs and Recommending Proper Advertisements to improve Complex Tasks searching 74 5.1. Observation and Main Idea 74 5.1.1. The taxonomy of consumption needs 74 5.1.2. Observation of consumption needs effecting ad sales 76 5.1.3. Observation of ads containing various ad of complex task 77 5.1.4. Observation of ads containing consumption needs 80 5.1.5. Analysis on three types of consumption needs for complex tasks 81 5.2. Consumption-Need-based Complex-Task Ad Recommendation 84 5.2.1. System Architecture 84 5.2.2. Subtask Query Discovery 85 5.2.3. Consumption Need Identification 89 5.2.4. Consumption-need-driven Ad Recommendation 95 5.3. Experiment 98 5.3.1. Experiment Setup 98 5.3.2. The Performance of Subtask Query Discovery 100 5.3.3. The Performance of Consumption Need Identification 107 5.3.4. The Performance of Consumption-need-driven Ad Recommendation 113 5.4. Summary 119 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 121 REFERENCES 122

    Abhishek, V., & Hosanagar, K. 2007, August. Keyword generation for search engine advertising using semantic similarity between terms. In Proceedings of the ninth international conference on Electronic commerce (pp. 89-94). ACM.
    Abrams, Z., Mendelevitch, O., & Tomlin, J. 2007, June. Optimal delivery of sponsored search advertisements subject to budget constraints. In Proceedings of the 8th ACM conference on Electronic commerce (pp. 272-278). ACM.
    Agichtein, E., Brill, E., & Dumais, S. (2006, August). Improving web search ranking by incorporating user behavior information. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 19-26). ACM.
    Anastasakos, T., Hillard, D., Kshetramade, S., & Raghavan, H. 2009, November. A collaborative filtering approach to ad recommendation using the query-ad click graph. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 1927-1930). ACM.
    Beeferman, D., & Berger, A. (2000, August). Agglomerative clustering of a search engine query log. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 407-416). ACM.
    Belk, R. W., Ger, G., & Askegaard, S. 2003. The fire of desire: A multisited inquiry into consumer passion. Journal of consumer research, 30(3), 326-351.
    Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., & Vigna, S. (2008, October). The query-flow graph: model and applications. In Proceedings of the 17th ACM conference on Information and knowledge management (pp. 609-618). ACM.
    Boujbel, L. 2010. Uncovering the affective and cognitive dimensions of consumer desires: an exploration. Advances in Consumer Psychology. Society for Consumer Psychology: Florida, 7, 236-237.
    Boujbel, L., & El Kamel, L. 2012. Overcoming Human Limits through the Satisfaction of Desires on Virtual Worlds. Online Consumer Behavior: Theory and Research in Social Media, Advertising, and E-tail, 55.
    Broder, A. (2002, September). A taxonomy of web search. In ACM SIGIR forum (Vol. 36, No. 2, pp. 3-10). ACM.
    Byung Kwon, O. 2003. “I know what you need to buy”: context-aware multimedia-based recommendation system. Expert systems with applications, 25 (3), 387-400.
    Ciaramita, M., Murdock, V., & Plachouras, V. 2008, April. Online learning from click data for sponsored search. In Proceedings of the 17th international conference on World Wide Web (pp. 227-236). ACM.
    Cui, J., Liu, H., Yan, J., Ji, L., Jin, R., He, J., ... & Du, X. (2011, October). Multi-view random walk framework for search task discovery from click-through log. In Proceedings of the 20th ACM international conference on Information and knowledge management (pp. 135-140). ACM.
    Diener, E., & Seligman, M. E. 2002. Very happy people. Psychological science, 13(1), 81-84.
    Downey, D., Dumais, S., Liebling, D., & Horvitz, E. 2008, October. Understanding the relationship between searchers' queries and information goals. In Proceedings of the 17th ACM conference on Information and knowledge management (pp. 449-458). ACM.
    Duan, H., Cao, Y., Lin, C. Y., & Yu, Y. (2008, June). Searching Questions by Identifying Question Topic and Question Focus. In ACL (pp. 156-164).
    Feild, H., & Allan, J. (2013, July). Task-aware query recommendation. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval (pp. 83-92). ACM.
    Griffiths, T. 2002. Gibbs sampling in the generative model of latent dirichlet allocation.s29
    Guo, Q., & Agichtein, E. 2010, July. Ready to buy or just browsing?: detecting web searcher goals from interaction data. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 130-137). ACM.
    Hillard, D., Schroedl, S., Manavoglu, E., Raghavan, H., & Leggetter, C. 2010, February. Improving ad relevance in sponsored search. In Proceedings of the third ACM international conference on Web search and data mining (pp. 361-370). ACM.
    Isaacs, L. R. 1972. Psychological Advertising: A New Area of FTC Regulation. Wis. L. Rev., 1097.
    Jansen, B. J., Booth, D. L., & Spink, A. 2008. Determining the informational, navigational, and transactional intent of Web queries. Information Processing & Management, 44(3), 1251-1266.
    Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 20(4), 422-446.
    Ji, M., Yan, J., Gu, S., Han, J., He, X., Zhang, W. V., & Chen, Z. (2011, July). Learning search tasks in queries and web pages via graph regularization. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (pp. 55-64). ACM.
    Joachims, T., Granka, L., Pan, B., Hembrooke, H., & Gay, G. (2005, August). Accurately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 154-161). ACM.
    Jones, R., & Klinkner, K. L. 2008, October. Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs. In Proceedings of the 17th ACM conference on Information and knowledge management (pp. 699-708). ACM.
    Kang, I. H., & Kim, G. (2003, July). Query type classification for web document retrieval. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 64-71). ACM.
    Kotov, A., Bennett, P. N., White, R. W., Dumais, S. T., & Teevan, J. (2011, July). Modeling and analysis of cross-session search tasks. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (pp. 5-14). ACM.
    Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data.
    Lee, U., Liu, Z., & Cho, J. (2005, May). Automatic identification of user goals in web search. In Proceedings of the 14th international conference on World Wide Web (pp. 391-400). ACM.
    Liao, Z., Song, Y., He, L. W., & Huang, Y. (2012, April). Evaluating the effectiveness of search task trails. In Proceedings of the 21st international conference on World Wide Web (pp. 489-498). ACM.
    Lin, T., Pantel, P., Gamon, M., Kannan, A., & Fuxman, A. 2012, April. Active objects: Actions for entity-centric search. In Proceedings of the 21st international conference on World Wide Web (pp. 589-598). ACM.
    Liu, J., & Belkin, N. J. 2010, July. Personalizing information retrieval for multi-session tasks: The roles of task stage and task type. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 26-33). ACM.
    Lucchese, C., Orlando, S., Perego, R., Silvestri, F., & Tolomei, G. (2011, February). Identifying task-based sessions in search engine query logs. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 277-286). ACM.
    Ma Kay, B., & Watters, C. (2008, April). Exploring multi-session web tasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1187-1196). ACM.
    Mihalkova, L., & Mooney, R. (2009). Learning to disambiguate search queries from short sessions. In Machine Learning and Knowledge Discovery in Databases (pp. 111-127). Springer Berlin Heidelberg.
    Papadopoulos, S., Menemenis, F., Kompatsiaris, Y., & Bratu, B. 2009. Lexical graphs for improved contextual ad recommendation. In Advances in Information Retrieval (pp. 216-227). Springer Berlin Heidelberg.
    Radlinski, F., Broder, A., Ciccolo, P., Gabrilovich, E., Josifovski, V., & Riedel, L. 2008, July. Optimizing relevance and revenue in ad search: a query substitution approach. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 403-410). ACM.
    Raman, K., Bennett, P. N., & Collins-Thompson, K. (2013, July). Toward whole-session relevance: Exploring intrinsic diversity in web search. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval (pp. 463-472). ACM.
    Ravi, S., Broder, A., Gabrilovich, E., Josifovski, V., Pandey, S., & Pang, B. 2010, February. Automatic generation of bid phrases for online advertising. In Proceedings of the third ACM international conference on Web search and data mining (pp. 341-350). ACM.
    Rose, D. E., & Levinson, D. (2004, May). Understanding user goals in web search. In Proceedings of the 13th international conference on World Wide Web (pp. 13-19). ACM.
    Sadikov, E., Madhavan, J., Wang, L., & Halevy, A. 2010, April. Clustering query refinements by user intent. In Proceedings of the 19th international conference on World Wide Web (pp. 841-850). ACM.
    Santos, R. L., Macdonald, C., & Ounis, I. 2010, April. Exploiting query reformulations for web search result diversification. In Proceedings of the 19th international conference on World wide web (pp. 881-890). ACM.
    Tan, B., Shen, X., & Zhai, C. (2006, August). Mining long-term search history to improve search accuracy. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 718-723). ACM.
    Tsatsou, D., Menemenis, F., Kompatsiaris, I., & Davis, P. C. 2009, October. A semantic framework for personalized ad recommendation based on advanced textual analysis. In Proceedings of the third ACM conference on Recommender systems (pp. 217-220). ACM.
    Voorhees, E. M. (1999, November). The TREC-8 Question Answering Track Report. In TREC (Vol. 99, pp. 77-82).
    Wang, T., Bian, J., Liu, S., Zhang, Y., & Liu, T. Y. 2013, August. Psychological advertising: exploring user psychology for click prediction in sponsored search. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 563-571). ACM.
    Wang, T. X., Tsai, K. Y., & Lu, W. H. Identifying Real-Life Complex Task Names with Task-Intrinsic Entities from Microblogs.
    White, R. W., Chu, W., Hassan, A., He, X., Song, Y., & Wang, H. (2013, May). Enhancing personalized search by mining and modeling task behavior. In Proceedings of the 22nd international conference on World Wide Web (pp. 1411-1420). International World Wide Web Conferences Steering Committee.
    Yamamoto, T., Sakai, T., Iwata, M., Yu, C., Wen, J.-R., and Tanaka, K. The Wisdom of Advertisers: Mining Subgoals via Query Clustering. In Proc. of CIKM 2012.
    Yin, X., & Shah, S. 2010, April. Building taxonomy of web search intents for name entity queries. In Proceedings of the 19th international conference on World wide web (pp. 1001-1010). ACM.
    Zeng, H. J., He, Q. C., Chen, Z., Ma, W. Y., & Ma, J. (2004, July). Learning to cluster web search results. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 210-217). ACM.

    無法下載圖示 校內:2020-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE