簡易檢索 / 詳目顯示

研究生: 賴亞婷
Lai, Ya-Ting
論文名稱: 系統性分析核糖體蛋白在不同生理狀態下的表現與功能
Systematically profiling the expression pattern of ribosomal proteins to study their functional role under different physiological conditions
指導教授: 王育民
Wang, Ju-Ming
曾大千
Tseng, T. Joseph
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 104
中文關鍵詞: 專門核糖體核糖體蛋白發炎大腸癌卵巢癌基因表現分析
外文關鍵詞: specialized ribosomes, ribosomal proteins, inflammation, colorectal cancer, ovarian cancer, gene expression analysis
相關次數: 點閱:156下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核糖體是由一大一小的次單元所組成的巨大複合物,組成分為核糖體RNA與核糖體蛋白,在所有生物體內執行蛋白質合成的任務。過去普遍地認為核糖體的組成是一致的,並且核糖體蛋白應該都要到位才會進行蛋白質合成,因此視核糖體為生物體內不會變動的管家基因(housekeeping gene)。然而,近年來越來越多文獻闡明生物體內「專門核糖體」的存在,意謂核糖體的異質性。許多研究指出降低特異性核糖體蛋白的表達可能不會干擾整體蛋白質合成,但會關閉某些特定轉錄物的轉譯作用。本研究收集人類正常組織、發炎、大腸癌以及卵巢癌之NGS和微陣列數據,並藉由統計學分析核糖體蛋白之基因表達的方式,探討核糖體蛋白在不同的生理狀態之下之表現與功能。結果顯示,人類正常組織、發炎狀態和不同癌症階段的核糖體蛋白都有表現量上升或下降的變動情形,呼應「專門核糖體」的概念;並且藉著基因表現分析的方式,找出可能具有組織特異性與參與發炎及癌症發展相關的核糖體蛋白。這個結果不僅有助於釐清核糖體蛋白在不同狀態下適應環境需求的變動情形,還發掘了參與在發炎以及癌症的可能因子,可作為未來應用於相關疾病之參考標記。

    The ribosome, a huge complex with large and small subunits that composed by ribosomal RNA and ribosomal proteins, is the major machine to perform the protein synthesis in all organisms. In general, we believe that the component of the ribosome complex is similar in different physiological condition, and the ribosomal proteins should be co-exist in the complex to conduct the protein synthesis. Therefore, the expression levels of ribosomal proteins should be similar in all conditions. However, more and more literature has highlighted the existence of "specialized ribosomes" in organisms recently, meaning the composition of the ribosome complex is different. Furthermore, Many studies have reported that reduced the expression of specific ribosomal protein may not interfere the overall protein synthesis, but the translation of some specific transcripts will be shutdown. In this study, we collected the ribosomal proteins expression levels from NGS and microarray data, which includes human normal tissues, inflammation condition, colorectal cancer and ovarian cancer, to explore their expression pattern under different physiological conditions. These results showed the fluctuation expression patterns of ribosomal genes in different physiological condition. Some ribosomal protein maintained a constant expression pattern, but others displayed tissue- or condition-specific expression pattern. Overall, our data not only helps us to demonstrate the expression diversity of ribosomal proteins under different situation to response environmental requirement, but also support the concept of specialized ribosome for further study.

    中英文摘要 I 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 XI CHAPTER 1 背景介紹 1 1-1核糖體(RIBOSOME) 1 1-1-1粒線體核糖體(mitochondrial ribosome) 2 1-2核糖體的生合成(RIBOSOME BIOGENESIS) 3 1-3 核糖體的轉譯作用機制(TRANSLATION OF RIBOSOMES) 4 1-4專門核糖體(SPECIALIZED RIBOSOMES)概述 6 1-4-1自然界中專門核糖體的例子 8 1-5核糖體蛋白(RIBOSOMAL PROTEINS, RPS) 9 1-6生物資訊學及其相關資料庫應用概述 14 1-7研究動機 16 CHAPTER 2 資料蒐集與統計方法 19 2-1生物資料來源 19 2-1-1 NGS定序資料 19 2-1-2微陣列(Microarray)之資料 19 2-2 統計方法 25 2-3 研究樣本與統計方法一覽圖 25 CHAPTER 3 資料分析結果 26 3-1 NGS資料分析核糖體蛋白 26 3-1-1人類核糖體蛋白在不同組織之變動 27 3-1-2人類粒線體核糖體蛋白之變動 29 3-2 發炎狀態下核糖體蛋白之變動 30 3-3大腸癌I-IV期核糖體蛋白之變動 32 3-4化療後大腸癌核糖體蛋白之變動 33 3-5卵巢癌I-IV期核糖體蛋白之變動 35 CHAPTER4 討論 37 4-1 專門核糖體與組織特異性 37 4-2核糖體蛋白與發炎 38 4-3核糖體蛋白與癌症 39 4-4總結與未來展望 42 參考文獻 44 參考網頁 56 附表與附圖 57

    1.Schmeing, T. M., and Ramakrishnan, V. What recent ribosome structures have revealed about the mechanism of translation. Nature, 1234-1242, 2009.
    2.Melnikov, S., Ben-Shem, A., Garreau de Loubresse, N., Jenner, L., Yusupova, G. and Yusupov, M. One core, two shells: bacterial and eukaryotic ribosomes. Nature Structural & Molecular Biology 19, 560–567, 2012.
    3.Filipovska, Aleksandra, and Oliver Rackham. Specialization from synthesis: How ribosome diversity can customize protein function. FEBS Letters, 1189-1197, 2013.
    4.Wimberly, B.T., Brodersen, D.E., Clemons Jr., W.M., Morgan-Warren, R.J.,Carter, A.P., Vonrhein, C., Hartsch. T. and Ramakrishnan, V. Structure of the 30S ribosomal subunit. Nature 407, 327–339, 2000.
    5.Ban, N., Nissen, P., Hansen, J., Moore, P.B. and Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920, 2000.
    6.Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate,J.H. and Noller, H.F. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896, 2001.
    7.Klinge, S., Voigts-Hoffmann, F., Leibundgut, M. and Ban, N. Atomic structures of the eukaryotic ribosome. Trends in Biochemical Sciences 37, 189–198, 2012.
    8.Rabl, J., Leibundgut, M., Ataide, S.F., Haag, A. and Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736, 2011.
    9.Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. and Ban, N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334, 941–948, 2011.
    10.Greber B.J. and Ban N. Structure and Function of the Mitochondrial Ribosome. Annual Review of Biochemistry, 103-32, 2016.
    11.O'Brien, T.W. and Kalf, G.F. Ribosomes from rat liver mitochondria. I. Isolation procedure and contamination studies. The Journal of Biological Chemistry, 2172–2179, 1967.
    12.O'Brien, T.W. and Kalf, G.F. Ribosomes from Rat Liver Mitochondria. II. Partial Characterization. The Journal of Biological Chemistry, 2180–2185, 1967.
    13.O'Brien, T.W. The General Occurrence of 55S Ribosomes in Mammalian Liver Mitochondria. The Journal of Biological Chemistry, 3409–3417, 1971.
    14.Matthews, D.E., Hessler, R.A., Denslow,N.D., Edwards, J. and O'Brien, T.W. Protein Composition of Bovine Mitochondrial Ribosomes. The Journal of Biological Chemistry, 8788–8794, 1982.
    15.Davies, S.M., Rackham, O., Shearwood, A.M., Hamilton, K.L., Narsai, R.,Whelan,
    J. and Filipovska, A. Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. Federation of European Biochemical Societies 583, 1853–1858, 2009.
    16.Wanschers, B. F., Szklarczyk, R., Pajak, A., Van den Brand, M. A., Gloerich, J., Rodenburg, R. J. and Huynen, M. A. C7orf30 specifically associates with the large subunit of the mitochondrial ribosome and is involved in translation. Nucleic Acids Research, 4040-4051, 2012.
    17.Richter, R., Rorbach, J., Pajak, A., Smith, P. M., Wessels, H. J., Huynen, M. A. and
    Chrzanowska-Lightowlers, Z. M. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. The EMBO Journal29, 1116-1125, 2010.
    18.Rorbach, J., Gammage, P. A. and Minczuk, M. C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Research 40, 4097-4109, 2012.
    19.Kressler, D., Hurt, E., and Baβler, J. Driving ribosome assembly. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 673-683, 2010.
    20.Xue, S., & Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nature Reviews Molecular Cell Biology, 355-369, 2012.
    21.Baxter-Roshek, J. L., Petrov, A. N., and Dinman, J. D. Optimization of Ribosome Structure and Function by rRNA Base Modification. PLoS ONE, e174, 2007.
    22.Jack K., Bellodi C., D., Landry, R., Niederer, Meskauskas, A., Musalgaonkar, S, Kopmar N., Krasnykh O., A., Dean, S., Thompson, Ruggero D. and D., Dinman.
    rRNA Pseudouridylation Defects Affect Ribosomal Ligand Binding and Translational Fidelity from Yeast to Human Cells. Molecular Cell, 660-666, 2011.
    23.Schafer T, et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature, 651–655, 2011.
    24.Martin-Marcos, P., Hinnebusch, A. G., & Tamame, M. Ribosomal Protein L33 Is Required for Ribosome Biogenesis, Subunit Joining, and Repression of GCN4 Translation. Molecular and Cellular Biology, 5968-5985, 2007.
    25.Ferreira-Cerca, S., Pöll, G., Kühn, H., Neueder, A., Jakob, S., Tschochner, H., and Milkereit, P. Analysis of the In Vivo Assembly Pathway of Eukaryotic 40S Ribosomal Proteins. Molecular Cell, 446-457, 2007.
    26.Peltz, S. W., Hammell, A. B., Cui, Y., Yasenchak, J., Puljanowski, L., & Dinman, J. D. Ribosomal Protein L3 Mutants Alter Translational Fidelity and Promote Rapid Loss of the Yeast Killer Virus. Molecular and Cellular Biology, 384-391, 1999.
    27.Rhodin, M. H., Rakauskaitė, R., & Dinman, J. D. The central core region of yeast ribosomal protein L11 is important for subunit joining and translational fidelity. Molecular Genetics and Genomics, 505-516, 2011.
    28.Henras, A. K., Soudet, J., Gérus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., & Henry, Y. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cellular and Molecular Life Sciences, 2334-2359, 2008.
    29.Johnson, A. W., Lund, E., & Dahlberg, J. Nuclear export of ribosomal subunits. Trends in Biochemical Sciences, 580-585, 2002.
    30.Weingarten-Gabbay, S., Elias-Kirma, S., Nir, R., Gritsenko, A. A., Stern-Ginossar, N., Yakhini, Z. Weinberger, A. and Segal, E. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science, aad4939, 2016.
    31.Hinnebusch, A. G., & Lorsch, J. R. The Mechanism of Eukaryotic Translation Initiation: New Insights and Challenges. Cold Spring Harbor Perspectives in Biology, a011544, 2012
    32.Pestova, T. V. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes & Development, 2906-2922, 2002.
    33.Jang, S. K. Internal initiation: IRES elements of picornaviruses and hepatitis c virus. Virus Research, 2-15, 2006.
    34.Dever, T. E., & Green, R. The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. Cold Spring Harbor Perspectives in Biology, a013706, 2012.
    35.Korostelev AA. Structural aspects of translation termination on the ribosome. RNA, 1409–1421, 2011.
    36.Sauert, M., Temmel, H. and Moll, I. Heterogeneity of the translational machinery: Variations on a common theme. Biochimie, 39-47, 2015.
    37.Deusser, E. and Wittmann, H.G. Ribosomal proteins: variation of the protein composition in Escherichia coli ribosomes as function of growth rate.Nature 238, 269–270,1972.
    38.Milne AN, Mak WW, Wong JT. Variation of ribosomal proteins with bacterial growth rate. Journal of Bacteriology, 89–92, 1975.
    39.Gilbert, W. V. Functional specialization of ribosomes? Trends in Biochemical Sciences, 127-132, 2011.
    40.Landry, D. M., Hertz, M. I., & Thompson, S. R. RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes & Development, 2753-2764, 2009.
    41.Ben-Shem A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M.. The structure of the eukaryotic ribosome at 3.0 A resolution. Science, 1524–1529, 2011.
    42.Hui, A., & De Boer, H. A. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proceedings of the National Academy of Sciences, 4762-4766, 1987.
    43.Rackham, O., and Chin, J. W. A network of orthogonal ribosome-mRNA pairs. Nature Chemical Biology, 159-166, 2005.
    44.Kellis M., Birren B.W., and Lander E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature, 617–624, 2004.
    45.Parenteau, J., Durand, M., Morin, G., Gagnon, J., Lucier, J., Wellinger, R., and Abou Elela, S. Introns within Ribosomal Protein Genes Regulate the Production and Function of Yeast Ribosomes. Cell, 320-331, 2011.
    46.Komili, S., Farny, N. G., Roth, F. P., and Silver, P. A. Functional specificity among ribosomal proteins regulates gene expression. Cell, 557–571, 2007.
    47.Barakat, A. The Organization of Cytoplasmic Ribosomal Protein Genes in the Arabidopsis Genome. PLANT PHYSIOLOGY, 398-415, 2001.
    48.Weijers D1, Franke-van Dijk M, Vencken RJ, Quint A, and Hooykaas P, Offringa R. An. Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a ribosomal protein S5 gene. Development, 4289–4299, 2001.
    49.Degenhardt, R. F., & Bonham-Smith, P. C. Arabidopsis Ribosomal Proteins RPL23aA and RPL23aB Are Differentially Targeted to the Nucleolus and Are Disparately Required for Normal Development. PLANT PHYSIOLOGY, 128-142, 2008.
    50.Kondrashov, N., Pusic, A., Stumpf, C. R., Shimizu, K., Hsieh, A., Xue, S., and Barna, M. Ribosome-Mediated Specificity in Hox mRNA Translation and Vertebrate Tissue Patterning. Cell, 383-397, 2011.
    51.Crick F. The origin of the genetic code. Journal of Molecular Biology, 367–379, 1968.
    52.Nissen P. The structural basis of ribosome activity in peptide bond synthesis. Science, 920–930, 2000.
    53.Noller H.F., Hoang L., Fredrick K.. The 30S ribosomal P site: a function of 16S rRNA. FEBS Letters, 855–858, 2005.
    54.Noller H.F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl extraction transferase to protein procedures. Science, 1416–1419, 1992.
    55.Held W.A., Mizushima S., Nomura M. Reconstitution of Escherichia coli 30S ribosomal subunits from purified molecular components. The Journal of Biological Chemistry, 5720–5730, 1973.
    56.Rohl R., Nierhaus K.H. Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proceedings of the National Academy of Sciences, 729–733, 1982.
    57.Mauro, V. P., & Edelman, G. M. The ribosome filter hypothesis. Proceedings of the National Academy of Sciences, 12031-12036, 2002.
    58.Mauro, V. P., and Edelman, G. M. The Ribosome Filter Redux. Cell Cycle, 2246-2251, 2007.
    59.Warner, J. and McIntosh, K. How Common Are Extraribosomal Functions of Ribosomal Proteins?. Molecular Cell, 3-11, 2009.
    60.Zhou, X., Liao, W., Liao, J., Liao, P. and Lu, H. Ribosomal proteins: functions beyond the ribosome. Journal of Molecular Cell Biology, 92-104, 2015.
    61.Mazumder, B., Sampath, P., Seshadri, V., Maitra, R. K., DiCorleto, P. E., and Fox, P. L. Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell, 187–198, 2003.
    62.Ray, P. S., & Fox, P. L. A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. The EMBO Journal, 3360-3372, 2007.
    63.Vyas, K., Chaudhuri, S., Leaman, D. W., Komar, A. A., Musiyenko, A., Barik, S., and Mazumder, B. Genome-Wide Polysome Profiling Reveals an Inflammation-Responsive Posttranscriptional Operon in Gamma Interferon-Activated Monocytes. Molecular and Cellular Biology, 458-470, 2008.
    64.Mukhopadhyay, R., Jia, J., Arif, A., Ray, P. S., and Fox, P. L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends in Biochemical Sciences, 324-331, 2009.
    65.Mukhopadhyay, R., Ray, P. S., Arif, A., Brady, A. K., Kinter, M., and Fox, P. L. DAPK-ZIPK-L13a Axis Constitutes a Negative-Feedback Module Regulating Inflammatory Gene Expression. Molecular Cell, 371-382, 2008.
    66.Gao, X., Wan, F., Mateo, K., Callegari, E., Wang, D., Deng, W., and Hardwidge, P. R. Bacterial Effector Binding to Ribosomal Protein S3 Subverts NF-κB Function. PLoS Pathogens, e1000708, 2009.
    67.Wan, F., Weaver, A., Gao, X., Bern, M., Hardwidge, P. R., and Lenardo, M. J. IKKβ phosphorylation regulates RPS3 nuclear translocation and NF-κB function during infection with Escherichia coli strain O157:H7. Nature Immunology, 335-343, 2011.
    68.Green, L., Houck-Loomis, B., Yueh, A., and Goff, S. P. Large Ribosomal Protein 4 Increases Efficiency of Viral Recoding Sequences. Journal of Virology, 8949-8958, 2012.
    69.Huang, J., Su, W., Jeng, K., Chang, T., and Lai, M. M. Attenuation of 40S Ribosomal Subunit Abundance Differentially Affects Host and HCV Translation and Suppresses HCV Replication. PLoS Pathogens, e1002766, 2012.
    70.Beyer, A. R., Bann, D. V., Rice, B., Pultz, I. S., Kane, M., Goff, S. P., and Parent, L. J. Nucleolar Trafficking of the Mouse Mammary Tumor Virus Gag Protein Induced by Interaction with Ribosomal Protein L9. Journal of Virology, 1069-1082, 2012.
    71.Haque, A., and Mir, M. A. Interaction of Hantavirus Nucleocapsid Protein with Ribosomal Protein S19. Journal of Virology, 12450-12453, 2010.
    72.Beyer, A. R., Bann, D. V., Rice, B., Pultz, I. S., Kane, M., Goff, S. P.,and Parent, L. J. Nucleolar Trafficking of the Mouse Mammary Tumor Virus Gag Protein Induced by Interaction with Ribosomal Protein L9. Journal of Virology, 1069-1082, 2012.
    73.Ruggero D., Pandolfi P.P. Does the ribosome translate cancer? Nature Reviews. Cancer, 179–192, 2003.
    74.Silvera D., Formenti S.C., Schneider R.J. Translational control in cancer. Nature Reviews. Cancer, 254–266, 2010.
    75.De las Heras-Rubio, A., Perucho, L., Paciucci, R., Vilardell, J., and LLeonart, M. E. Ribosomal proteins as novel players in tumorigenesis (Review). Cancer and Metastasis, 2013.
    76.Goudarzi, K., and Lindström MS, M. Role of ribosomal protein mutations in tumor development (Review). International Journal of Oncology, 2016.
    77.Artero-Castro, A., Castellvi, J., García, A., Hernández, J., Cajal, S. R., and LLeonart, M. E. Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. Human Pathology, 194-203, 2011.
    78.Shi, Y., Zhai, H., Wang, X., Han, Z., Liu, C., Lan, M., and Fan, D. Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Experimental Cell Research, 337-346, 2004.
    79.Guo, X., Shi, Y., Gou, Y., Li, J., Han, S., Zhang, Y., and Fan, D. Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27Kip1. Journal of Cellular and Molecular Medicine, 296-306, 2011.
    80.Marechal, V., Elenbaas, B., Piette, J., Nicolas, J. C., and Levine, A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Molecular and Cellular Biology, 7414-7420, 1994.
    81.Dai, M., and Lu, H. Inhibition of MDM2-mediated p53 Ubiquitination and Degradation by Ribosomal Protein L5. Journal of Biological Chemistry, 44475-44482, 2004.
    82.Zhang, Y., Wolf, G. W., Bhat, K., Jin, A., Allio, T., Burkhart, W. A., and Xiong, Y. Ribosomal Protein L11 Negatively Regulates Oncoprotein MDM2 and Mediates a p53-Dependent Ribosomal-Stress Checkpoint Pathway. Molecular and Cellular Biology, 8902-8912, 2003.
    83.Jin, A., Itahana, K., O'Keefe, K., and Zhang, Y. Inhibition of HDM2 and Activation of p53 by Ribosomal Protein L23. Molecular and Cellular Biology, 7669-7680, 2004.
    84.Zhu, Y., Poyurovsky, M. V.,4-3 Li, Y., Biderman, L., Stahl, J., Jacq, X., and Prives, C. Ribosomal Protein S7 Is Both a Regulator and a Substrate of MDM2. Molecular Cell, 316-326, 2009.
    85.Zhang, X., Wang, W., Wang, H., Wang, M., Xu, W., and Zhang, R. Identification of ribosomal protein S25 (RPS25)–MDM2–p53 regulatory feedback loop. Oncogene, 2782-2791, 2012.
    86.Daftuar, L., Zhu, Y., Jacq, X., & Prives, C. (2013). Ribosomal Proteins RPL37, RPS15 and RPS20 Regulate the Mdm2-p53-MdmX Network. PLoS ONE, 8(7), e68667.
    87.Zhou, X., Hao, Q., Zhang, Q., Liao, J., Ke, J., Liao, P., and Lu, H. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death and Differentiation, 755-766, 2014. .
    88.De Keersmaecker, K., Atak, Z. K., Li, N., Vicente, C., Patchett, S., Girardi, T., and Cools, J. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nature Genetics, 186-190, 2012.
    89.Smolock, E. M., Korshunov, V. A., Glazko, G., Qiu, X., Gerloff, J., and Berk, B. C. Ribosomal Protein L17, RpL17, is an Inhibitor of Vascular Smooth Muscle Growth and Carotid Intima Formation. Circulation, 2418-2427, 2012.
    90.Hogeweg, P. The Roots of Bioinformatics in Theoretical Biology. PLoS Computational Biology, e1002021, 2011.
    91.Watson, James D., and Francis HC Crick. Molecular structure of nucleic acids. Nature, 737-738, 1953.
    92.Collins, F. The Human Genome Project: Lessons from Large-Scale Biology. Science, 286-290, 2003.
    93.NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, (Database issue): D8–D20, 2012.
    94.Tateno, Y. DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Research, 27-30, 2002.
    95.Bortoluzzi S, d’Alessi F, Romualdi C, Danieli GA. Differential expression of genes coding for ribosomal proteins in different human tissues. Bioinformatics, 1152–1157, 2001.
    96.Ajore, R., Raiser, D., McConkey, M., Jöud, M., Boidol, B., Mar, B., Saksena, G., Weinstock, D., Armstrong, S., Ellis, S., Ebert, B. and Nilsson, B. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Molecular Medicine, 498-507, 2017.
    97.Gupta, V. and J. R. Warner. Ribosome-omics of the human ribosome. RNA, 1004-1013. 2014.
    98.Chaillou, T., Zhang, X. and McCarthy, J. J. Expression of Muscle-Specific Ribosomal Protein L3-Like Impairs Myotube Growth. Journal of Cellular Physiology, 1894-1902, 2016.
    99.Bhat, P., Shwetha, S., Sharma, D. K., Joseph, A. P., Srinivasan, N. and Das, S. The beta hairpin structure within ribosomal protein S5 mediates interplay between domains II and IV and regulates HCV IRES function. Nucleic Acids Research, 2888-2901, 2015.
    100.Artero-Castro, A., Kondoh, H., Fernandez-Marcos, P. J., Serrano, M., Ramon y Cajal, S., and Lleonart, M. E. Rplp1 bypasses replicative senescence and contributes to transformation. Experimental Cell Research, 315, 2009.
    101.Artero-Castro, A., Castellvi, J., Garcia, A., Hernandez, J., Ramon y Cajal, S., and Lleonart, M. E. Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. Human Pathology, 194–203, 2011.
    102.Wool, I. G. Extraribosomal functions of ribosomal proteins. Trends in Biochemical Sciences, 164–165, 1996.
    103.Lindstrom, M. S., and Zhang, Y. Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. Journal of Biological Chemistry, 15568–15576, 2008.
    104.Chester KA, Robson L, Begent RH, Talbot IC, Pringle JH, Primrose L, Macpherson AJ, Boxer G, Southall P, Malcolm AD. Identification of a human ribosomal protein mRNA with increased expression in colorectal tumours. Biochimica et Biophysica Acta, 297–300, 1989.
    105.Vaarala M.H., Porvari K.S., Kyllönen A.P., Mustonen M.V., Lukkarinen O., and Vihko P.T. Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: Confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. Int J Cancer, 27–32, 1998.
    106.Wang, Y., Sui, J., Li, X., Cao, F., He, J., Yang, B., and Pu, Y. RPS24 knockdown inhibits colorectal cancer cell migration and proliferation in vitro. Gene, 286-291, 2015.
    107.Huang, C. J., Yang, S. H., Lee, C. L., Cheng, Y. C., Tai, S. Y., and Chien, C. C. Ribosomal protein S27-like in colorectal cancer: a candidate for predicting prognoses. PLoS One, e67043, 2013.
    108.Kobayashi, T., Sasaki, Y., Oshima, Y., Yamamoto, H., Mita, H., Suzuki, H., and Shinomura, Y. Activation of the ribosomal protein L13 gene in human gastrointestinal cancer. International Journal of Molecular Medicine, 161–170, 2006.
    109.Bee, A., Ke, Y., Forootan, S., Lin, K., Beesley, C., Forrest, S. E. Foster C.S. Ribosomal protein l19 is a prognostic marker for human prostate cancer. Clinical Cancer Research, 2061–2065, 2006.
    110.Yoo, Y. A., Kim, M. J., Park, J. K., Chung, Y. M., Lee, J. H., Chi, S., and Yoo, Y. D. Mitochondrial Ribosomal Protein L41 Suppresses Cell Growth in Association with p53 and p27Kip1. Molecular and Cellular Biology, 6603-6616, 2005.

    1.生物資訊專題(上)
    https://investigatortw.wordpress.com/2013/11/17/bioinformatics-1/
    2.生物資訊專題(下)
    https://investigatortw.wordpress.com/2013/11/27/%E7%94%9F%E7%89%A9%E8%B3%87%E8%A8%8A-bioinformatics-%E5%B0%88%E9%A1%8C%EF%BC%88%E4%B8%
    8B%EF%BC%89/

    下載圖示 校內:2019-12-01公開
    校外:2020-12-25公開
    QR CODE