| 研究生: |
吳俊毅 Wu, Chun-Yi |
|---|---|
| 論文名稱: |
以分子動力學模擬探討鋯基多元非晶奈米薄膜之濺鍍沉
積與力學壓痕行為 Investigation of Sputter Deposition and Mechanical Indentation Behavior of Zr-based Multi-Component Amorphous Nano-Scale Thin Films via Molecular Dynamics Simulation |
| 指導教授: |
王雲哲
Wang, Yun-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 薄膜 、分子動力學 、奈米壓痕 、金屬玻璃 |
| 外文關鍵詞: | metallic glass, thin film, indentation, molecular dynamics |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以分子動力學 (MD) 模擬薄膜之濺鍍沉積所製備出的鋯基金屬玻璃薄膜(Zr47Cu31Al13Ni9),此薄膜的力學性質則由奈米壓印模擬進行探討。在沉積模擬中,多種原子與原子間的交互作用力採用了tight-binding (TB) 多體勢能,金屬原子與作用氣體 (Ar+) 間作用力使用Moliere 勢能。沉積模擬結果顯示此薄膜為一非晶系統。接著利用圓錐探針進行壓痕模擬,並在金屬玻璃的表面觀察到,均勻塑性流動堆積的現象。且從MD計算的堆積指標與實驗結果是可以相互比較的。而且,我們的MD結果指出,堆積指標在玻璃轉換溫度附近,顯示不正常跳躍現象,可以間接解釋此薄膜的玻璃轉換溫度為758K。本文進而由壓印模擬中的力與位移關係,隨著溫度的改變,探討壓痕模數以及硬度與溫度的關係圖,MD模擬與實驗結果在硬度與楊氏模數隨時間減少的速率是一致的。常溫300K中硬度實驗是5.2GPa,MD模擬是7GPa,硬度隨溫度改變速率約2MPa/K;而楊氏模數實驗為80GPa而MD模擬僅為40GPa,楊氏模數隨溫度改變速率為22MPa/K。金屬玻璃的變形機制為剪力帶的形成與傳遞,此機制亦控制金屬玻璃的機械性質。本文由三維空間原子尺度下的應變間接探討剪力帶的形成與分佈,並且研究探針尖端下的局部應變與剪力帶的關係。另外,更快的壓印速率會降低硬度,並且在凹痕尖端產生更大的擾動區域及擴大剪力帶範圍。
Molecular-dynamics (MD) models of the Zr-based metallic-glass film (Zr47Cu31Al13Ni9, in atomic percent) were constructed via simulating sputter depositions. The as-deposited films were used as initial structures for subsequent nano-indentation simulations. For the deposition simulations, a many-body, tight-binding potential was adopted for interatomic interactions among the multiple species of atoms. Interactions between the metallic atoms and working gas (Ar+) were modeled with the pair-wise Moliere potential. The deposition simulations revealed an amorphous morphology of the as-deposited films. Indentation simulations with a right-angle conical indenter tip showed a homogeneous flow to form pile-ups on the surface of the metallic glass around the indent. The pileup index calculated from MD is consistent with that obtained from the experiment. Moreover, our MD results show that the pileup index exhibits anomalies, defined as unusual changes in the values of the pileup index, around the glass-transformation temperature (758 K) through in situ indentation simulations. From indentation load-displacement curves at various temperatures, it is found that indentation modulus and hardness obtained from MD simulations are in agreement with experimental findings in terms of their decreasing rates with respect to the temperature. The hardness in experiment is 5.2GPa and in MD simulation is 7GPa. The decreasing rate of hardness is about 2MPa/K. The Young’s modulus in experiment is 80GPa and in MD simulation is 40GPa. The decreasing rate of Young’s modulus is about 22MPa/K. Since the formation and propagation of shear bands in metallic glasses dominate their mechanical properties, we perform three-dimensional atomic-strain calculations, and study the connections between the strain localization and propagation of shear bands under the indenter tip. In addition, higher loading rates decrease hardness, and cause larger disturbed regions under the indent, and enlarge shear-banding patterns.
1 Y. Wang, J. Li, A. V. Hamza and T.W. B. Jr, Ductile crystalline-amorphous nanolaminates, PNAS 104, 11155-11160, (2007)
2 H. R. Gong and B. X. Liu, Unusual alloying behavior at the equilibrium immiscible Cu-Nb interfaces, Journal of Applied Physics, 96, 3020, (2004)
3 C. C. Aydiner, D. W. Brown, A. Misra, N. A. Mara, Y. C. Wang, J. J. Wall and J. Almer, Residual strain and texture in free-standing nanoscale Cu-Nb multilayers, Journal of Applied Physics, 102, 083514, (2007)
4 G. H. Gilmer, Simulations of vapor-deposition by molecular-dynamics, Abstracts of Papers of the American Chemical Society, 175, 72-72, (1978)
5 G. H. Gilmer, M. H. Grabow and A. F. Bakker, Modeling of epitaxial growth, Material Science and Engineering B, 6, 101-112, (1990)
6 K. H. Muller, Cluster-beam deposition of thin-films – a molecular-dynamics simulation, Journal of Applied Physics, 61, 2516-2532, (1987)
7 R. Biswas, G. S. Grest and C. M. Soukoulis, Molecular- dynamics simulation of cluster and atom deposition on silicon (111), Physics Review B, 38, 8154-8162, (1988)
8 J. Jortner, Cluster-size effects revisited, Journal de Chimie Physique et de Physico-Chimie Biologique, 92, 205-225, (1995)
9 H. W. Lu, J. Q. Xie and J. Y. Feng, Simulation study on Si and Ge film growth by cluster deposition, Nuclear Instruments & Methods in Physics Research Section B – Beam Interactions with Materials and Atoms, 170, 71-78, (2000)
10 J. W. Kang, K. S. Choi, J. C. Kang, E. S. Kang, K. R. Byun and H. J. Hwang, Cluster deposition study by molecular dynamics simulation: Al and Cu cluster, Journal of Vacuum Science & Technology A, 19, 1902-1906, (2001)
11 J. W. Kang and H. J. Hwang, Molecular dynamics simulations of energetic aluminum cluster deposition, Computational Materials Science, 23, 105-110, (2002)
12 A. Dzhurakhalov, A. Rasulov, T. Hoof and M. Hou, Ag-Co clusters deposition on Ag (100): an atomic scale study, European Physical Journal D, 31, 53-61, (2004)
13 T. Hoof, A. Dzhurakhalov and M. Hou, Interface formation by low energy deposition of core-shell Ag-Co nanoclusters on Ag (100), European Physical Journal D, 43, 159-163, (2007)
14 X. W. Zhou, R. A. Johnson and H. N. G. Wadley, A molecular dynamics study of nickel vapor deposition: temperature, incident angle, and adatom energy effects, ACTA Materialia, 45, 1513-1524, (1997)
15 M. Kubo, Y. Qumi, H. Takaba, A. Chatterjee and A. Meyamoto, Chemical vapor deposition process on the ZSM-5 (010) surface as investigated by molecular dynamics, Journal of Physics Chemistry B, 103, 1876-1880, (1999)
16 M. Yamashita, Fundamental characteristics of built-in high-frequency coil-type sputtering apparatus, Journal of Vacuum Science & Technology A – Vacuum Surfaces and Films, 7, 151-158, (1989)
17 S. M. Rossnagel and J. Hopwood, Metal-ion deposition from ionized magnetron sputtering discharge, Journal of Vacuum Science & Technology B, 12, 449-453, (1994)
18 S. M. Rossnagel and J. Hopwood, Magnetron sputter-deposition with high-levels of metal ionization, Applied Physics Letters, 63, 3285-3287, (1993)
19 N. A. Kubota, D. J. Economou and S. J. Plimpton, Molecular dynamics simulations of low-energy (25-200 ev) argon ion interactions with silicon surfaces: sputter yields and product formation pathways, Journal of Applied Physics, 83, 4055-4063, (1998)
20 D. G. Coronell, D. E. Hansen, A. F. Voter, C. L. Liu, X. Y. Liu and J. D. Kress, Molecular dynamics based ion surface interaction models for ionized physical vapor deposition feature scale simulations, Applied Physics Letters, 73, 3860-3862, (1998)
21 U. Hansen and A. Kersch, Reaction rates for ionized physical vapor deposition modeling from molecular dynamics calculations: effect of surface roughness, Physical Review B, 60, 14417-14421, (1999)
22 C. C. Fang, F. Jones, R. R. Kola, G. K. Celler and V. Prasad, Stress and microstructure of sputter deposited thin films molecular dynamics simulations and experiment, Journal of Vacuum Science & Technology B, 11, 2947-2952, (1993)
23 C. C. Fang, F. Jones and V. Presad, Effect of gas impurity and ion-bombardment on stresses in sputter deposited thin films – a molecular dynamics approach, Journal of Applied Physics, 74, 4472-4482, (1993)
24 C. C. Fang, V. Presad and F. Jones, Molecular dynamics modeling of microstructure and stresses in sputter deposited thin films, Journal of Vacuum Science & Technology A – Vacuum Surface and Films, 11, 2778-2789, (1993)
25 S. Nose and M. L. Klein, Molecular dynamics study of the alloy (N2)67(Ar)29, Canadian Journal of Physics, 63, 1270-1273, (1985)
26 R. Takagi, A. K. Adya and K. Kawamura, Molecular dynamics simulation of amorphous Pd80Si20 alloy, transactions of the Japan Institute of Metals, 28, 761-764, (1987)
27 K. Hoshino and J. J. Vanwering, Molecular dynamics study of the structure of a liquid Li-Na alloy, Journal of Physics F – Metal Physics, 18, 123-126, (1988)
28 V. S. Stepanyuk, A. A. Katsnelson, O. S. Trushin and A. Szasz, Structure of the amorphous Fe-B alloy modeled by molecular dynamics, Physica Status Solidi A – Applied Research, 122, k7-k9, (1990)
29 M. Maret, F. Lancon and L. Billard, A molecular dynamics study of the liquid Al80Mn20 alloy using pair potentials derived from diffraction experiments, Physics B, 180, 854-856, (1992)
30 J. Lu and J. A. Szpunar, Molecular dynamics simulation of mechanical alloying for the Al50Ti50 alloy, Journal of Applied Physics, 74, 902-904, (1993)
31 H. Li, G. H. Wang, F. Ding, J. L. Wang and W. F. Shen, Molecular dynamics computation of clusters in liquid Fe-Al alloy, Physics Letters A, 280, 325-332, (2001)
32 H. Li, X. F. Bian and G. H. Wang, Molecular dynamics computation of the liquid structure of Fe50Al50 alloy, Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing, 298, 245-250, (2001)
33 M. Guerdance and H. Teichler, Structure of the amorphous, massive-metallic-glass forming Ni25Zr60Al15 alloy from molecular dynamics simulations, Physical Review B, 65, 014204, (2002)
34 H. J. Han and H. Teichler, Liquid-to-glass trainsition in Bulk glass-forming Cu60Ti20Zr20 alloy by molecular dynamics simulations, Physical Review E, 75, 061501, (2007)
35 S. N. Sambandam, S. Bhansali, V. R. Bhethanabotla and D. K. Sood, Studies on sputtering process of multicomponent Zr-Ti-Cu-Ni-Be alloy thin films, Vacuum, 80, 406-414, (2006)
36 S. Matsuoka, M. Hasebe, R. Oshima and F. E. Fujita, Improvement of ductility of melt spun Cu-Al-Ni shape memory alloy ribbons by addition of Ti or Zr, Japanese Journal of Applied Physics part 2 – letters, 22, 1528-1530, (1983)
37 R. Busch, E. Bakke and W. L. Johnson, Solid state amorphization and metastable supercooled melting in the Zr-Al-Cu-Ni bulk metallic glass forming alloy system, Materials Science Forum, 225, 141-146, (1996)
38 Y. Q. Gao, Y. B. Lo, X. Q. Yang, S. L. Li and Y. S. Gao, Glass forming and crystallization in Ti-Zr-Ni-Ge, Ti-Ni-Cu-Al and Ti-Zr-Fe alloy systems, International Journal of Rapid Solidification, 6, 231-245, (1991)
39 T. Yamauchi, M. Yamada, K. Tanaka, Y. Yamada and U. Mizutani, SxS study on local structures about aluminum atoms in ternary (Cu, Ni)-(Ti, Zr)-Al alloy glass, Journal of the Physical Society of Japan, 58, 255-259, (1989)
40 J. S. lee and C. M. Wayman, Grain-refinement of a Cu-Al-Ni shape memory alloy by Ti and Zr additions, Transactions of the Japan Institute of Metals, 27, 584-591, (1986)
41 M. Qi and H. J. Fecht, On the thermodynamics and kinetics of crystallization of a Zr-Al-Ni-Cu-based bulk amorphous alloy, Materials Characterization, 47, 215-218, 2001
42 H. J. Liu, W. R. Chen, Y. M. Wang, D. H. Wang, D. J. Li and C. Dong, A new bulk Zr-Al-Ni-Cu amorphous alloy, ACTA Metallurgica Sinica, 39, 938-942, (2003)
43 M. Iqbal, J. I. Akhter, W. S. Sun, H. F. Zhang and Z. Q. Hu, Synthesis and mechanical properties of an amorphous Zr-Ni-Al-Cu alloy, Journal of Alloys and Compounds, 422, 218-222, (2006)
44 W. Klement, R. H. Wilens and P, Duwez, Non-crystalline structure in solidified gold-silicon alloys, Nature, 187, 869, (1960)
45 H. S. Chen and C. E. Miller, A rapid quenching technique for preparation of thin uniform films of amorphous solids, Review of Scientific Instruments, 41, 1237, (1970)
46 H. H. Liebermann and C. D. Graham, Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions, IEEE Transactions on Magnetics, 12, 921-921, (1976)
47 T. Haga and S. Suzuki, Single roll method for foil casting of the aluminum alloy, Journal of Materials Processing Technology, 137, 86-91, (2003)
48 M. C. Narasimhan, US Patent, 4, 221-257, (1980)
49 A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method, Materials Transactions JIM, 32, 609-616, (1991)
50 A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mg-Cu-Y bulk amorphous alloys with high-tensile strength produced by a high-pressure die-casting method, Materials Transactions JIM, 33, 937-945, (1992)
51 M. K. Miller and P.K. Liaw, editors, Bulk-metallic glasses, Springer, Berlin, (2007)
52 C. A. Schuh, T. C. Hufnagel and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia 55, 4067-4109, (2007)
53 U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay, Hardness and plastic deformation in a bulk metallic glass, Acta Materialia 53, 705–717, (2005)
54 V. Keryvin, K. E. Prasad, Y. Gueguen, J. Sanglebœuf, and U. Ramamurty, Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition, Philosophical Magazine 88, 1773–1790, (2008)
55 W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinement to methodology, Journal of Materials Research 19, 3-20, (2004)
56 F. X. Liu, Y. F. Gao and P. K. Liaw, Rate-Dependent Deformation Behavior of Zr-Based Metallic-Glass Coatings Examined by Nanoindentation, Metallurgical and Materials Transactions A 39, 1862-1867, (2008)
57 J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, and C. H. Kuo, Annealing-induced full amorphization in a multicomponent metallic film, Phys. Rev. B 69, 113410, (2004)
58 F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan, J. P. Chu and P. D. Rack, Fatigue-resistance enhancements by glass-forming metallic films, Materials Science and Engineering A 468-470, 246-252, (2007)
59 C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw and R. A. Buchanan, A 200 nm thick glass-forming metallic film for fatigue-property enhancements, Applied Physics Letter 88, 131902, (2006)
60 R. B. Schwarz and W. L. Johnson, Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals, Physical Review Letters 51, 415-418, (1983)
61 S. H. Liang, J. H. Li and B. X. Liu, Solid-state amorphization of an immiscible Nb-Zr system simulated by molecular dynamics, Computational Materials Science 42, 550-557, (2008)
62 J. B. Liu, Z. C. Li, B. X. Liu, G. Kresse and J. Hafner, Stability of a nonequilibrium phase in an immiscible Ag-Ni system studied by ab initio calculations and ion-beam-mixing experiment, Phys. Rev. B 63, 132205, (2001)
63 A. R. Leach, Molecular modeling: principles and applications, 2nd ed., Prentice Hall, (2001)
64 H. W. Sheng, W. K. Luo, F. M. Alamgir, J. Bai and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature, 439, 419 – 425, (2006)
65 Y. Shi and M. L. Falk, Structural transformation and localization during simulated nanoindentation of a noncrystalline metal film, Applied Physics Letters 86, 011914, (2005)
66 F. Shimizu, S. Ogata and J. Li, Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations, Materials Transactions 48, 2923-2927, (2007)
67 Q. K. Li and M. Li, Atomistic simulations of correlations between volumetric change and shear softening in amorphous metals, Physical Review B 75, 094101, (2007)
68 A. K. Nair, E. Parker, P. Gaudreau, D. Farkas and R. D. Kriz, Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study, International Journal of Plasticity vol. 24, pp. 2016-2031, (2008)
69 J. J. Kim, Y. Choi, S. Suresh and A. S. Argon, Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature, Science 295, 654–657, (2002)
70 T. G. Nieh and J. Wadsworth, Bypassing shear band nucleation and ductilization of an amorphous–crystalline nanolaminate in tension, Intermetallics 16, 1156-1159, (2008)
71 L. Liu, K. C. Chan, M. Sun and Q. Chen, The effect of the addition of Ta on the structure, crystallization and mechanical properties of Zr-Cu-Ni-Al-Ta bulk metallic glasses, Materials Science and engineering A, 445-446, 697-706, (2007)
72 H. C. Lin, J. G. Chang, S. P. Ju and C. C. Hwang, A general consideration of incident impact energy accumulation in molecular dynamics thin film simulations – a new approach using thermal control layer marching algorithm, Proceedings of the Royal Society A, 461, 3977-3998 (2005)
73 F. Cleri, and V. Rosato, Tight-binding potentials for transition metals and alloys, Physical Review B, 48, 22-33, (1993)
74 P. M. Gullett, M. F. Horstemeyer, M. I. Baskes and H. Fang, A deformation gradient tensor and strain tensors for atomistic simulations, Modelling and Simulation in Materials Science and Engineering, 16, 01500, (2007)
75 Y. C. Wang, C. Y. Wu, H. C. Lin, P. K. Liaw, Y. Gao and J. P. Chu, in preparation, (2009)
76 C. A. Schuh, T. G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Materialia 51, 87-99, (2003)
77 G. Y. Wang, P. K. Liaw, Y. Yokoyama, A. Peker, W. H. Peter, B. Yang, M. Freels, Z. Y. Zhang, V. Keppens, R. Hermann, R. A. Buchanan, C. T. Liu and C. R. Brooks, Studying fatigue behavior and Poisson’s ratio of bulk-metallic glasses, Intermetallics 15, 663-667, (2007)
78 Z. Zhang, P. K. Liaw, Y. Yokoyama and A. Inoue, Elastic properties of Zr-based bulk metallic glasses studied by resonant ultrasound spectroscopy, Journal of Materials Research 22, 364-367, (2007)
79 Z. S. Basinski, M. S. Duesberry, R. Taylor, Influence of shear stress on screw dislocations in a model sodium lattice, Canadian Journal of Physics, 49, 2160–2180, (1971)
80 Z. H. Hong, S. F. Hwang and T. H. Fang, Atomic-level stress calculation and two potentials for critical conditions of deposition process, Crystal Growth & Design, Vol. 8, No. 4, 1191-1199, (2008)
81 M. Zhou, A new look at the atomic level virial stress: on continuum-molecular system equivalence, Royal Society of London Proceedings Series A, vol. 459, Issue 2037, pp.2347-2392, (2003)
82 D. H. Tsai, Virial theorem and stress calculation in molecular-dynamics, Journal of Chemical Physics, 70(3):1375–1382, (1979)
83 Jonathan Zimmerman et al., Calculation of stress in atomistic simulation, MSMSE, Vol. 12, pp. S319-S332, (2004)
84 J. M. Haile, Molecular dynamics simulation, New York: John Wiley & Sons, (1992)
85 D. C. Rapaport, The art of mocular dynamics simulation, London: Cambridge University Press, (1997)
86 D. Frenkel and B. Smit, Understanding molecular simulation, Academic Press, San Diego, (1996)
87 F. Cleri and V. Rosato, Tight-binding potentials for transition metals and alloys, Physical Review B, 48, 22-33, (1993)
88 M. Ladeveze, G. Treglia, P. Muller and F. A. d’Avitaya, Step-driven molecular adsorption of Sb on Si (111), Surface Science, 395, 317-325, (1998)
89 T. Iwasaki, Molecular dynamics study of adhesion strength and diffusion at interfaces between interconnect materials and underlay materials, Computational mechanics, 25, 78-86, (2000)