簡易檢索 / 詳目顯示

研究生: 方彥朝
Fang, Yang-Chou
論文名稱: 利用微米脊製備次微米之長流道
Fabrication of Long Sub-micron Channels Using Patterned Microridges Generated by Inductively Coupled Plasma Process
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: microridgesinductively coupled plasma-reactive ion etching(ICP-RIE)spin coatingpolydimethyl siloxane(PDMS)
外文關鍵詞: spin coating, microridges, inductively coupled plasma- reactive ion etching, polydimethyl siloxane (PDMS)
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於奈米科技的發展潛能,及對未來生活可能產生的影響,因此近年一直是熱門的研究課題。於奈米科技中,流體在奈米尺度下的流動為其中一項研究課題,除了能讓我們有機會探索在奈米尺度下的流動行為以及現象外,更能加以應用在如分離或偵測等許多方面。然而,在製作奈米流道時,不是製程繁瑣,就是所使用之儀器昂貴,因此大多數奈米流體的研究皆以理論分析以及模擬為主。
    本研究提出以矽晶圓為基材製作矽微脊結構,並在矽微脊結構上旋轉塗佈PDMS(polydimethyl siloxane),利用PDMS-矽微脊複合結構為模具,灌注PDMS翻製微流道(microchannel),在封閉流道時,藉由施加壓力以得到次微米流道。實驗結果顯示,我們可以運用矽基加工技術(silicon-based micromachining)中的誘導感應偶合電漿離子蝕刻(inductive coupled plasma-reactive ion etching,ICP-RIE),進行一段式或二段式蝕刻以製作矽微脊結構。以一段蝕刻的方式製得的矽脊結構表面較為平滑,但對寬遮罩進行蝕刻時,由於電漿分佈不均,難以準確控制蝕刻時間;而以二段蝕刻的方式,雖然能準確控制蝕刻時間,但得到的矽脊結構表面較粗糙。利用蝕刻所製得的矽微脊長度可達約1 mm。而旋轉塗佈PDMS於矽微脊上所製得的PDMS-矽微脊複合結構,可以用來翻製出低深寬比,截面為三角形之 PDMS微流道。由於PDMS材質強度較弱,可藉由在封裝流道時,因流道塌陷而縮減其尺寸。若在接合過程中再施加壓力,則可以進一步縮減流道尺寸而得到長950 μm、深700 nm、高500 nm之PDMS次微米級流道。

    Owing to its potential technology breakthrough to impact the human life, micro/nanotechnology has been heavily pursued in recent years. Study of fluidics at nanoscale is one of the research topics, which not only provides us with the opportunity to better understand the flow behavior at nanoscale and explore new phenomena but also can be used for many applications such as separation, detection, and so on. However, unlike microfluidics, most of the research regarding nanofluidics has been found to relate to theoretical analyses and simulation due to lacking the easy access to nanochannels. In this study, we propose a relatively simple and less expensive alternative to fabricate long sub-micron channels. The microridges are first obtained through inductively coupled plasma- reactive ion etching (ICP-RIE) process, followed by spin-coating and casting of polydimethyl siloxane (PDMS). The results show that both one-step and two-step ICP-RIE processes can be applied to fabricate long microridges. For the one-step process, the surface of the microridges is smooth but the etching time is relatively difficult to control due to the wider mask used. For the two-step process, better control of etching time is possible; however, the surface of the microridges is relatively rough. The length of the microridges can reach up to 1 mm. Spin coating of PDMS on the microridges results in PDMS/microridges composite mold and the lower the spin speed, the lower the aspect ratio of the mold. The triangular shaped PDMS microchannels can be obtained by casting PDMS on the PDMS/microridges composite mold. After bonding, the dimensions of the sealed PDMS microchannels are further reduced because of the collapse of the microchannel edges. With pressure applied during bonding process, fabrication of long sub-micron PDMS channels can be achieved.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 序論 1 1.1前言 1 1.2 研究動機與方法 2 第二章 文獻回顧 4 2.1 直接製作微流道或製作高分子微米加工所用之模具 4 2.1.1 X光源深蝕刻電鑄模造技術 ( LIGA process ) 4 2.1.2 矽基材加工技術(Silicon-based micro-maching process) 6 2.1.3電子束蝕刻(EBL:electron beam lithography) 9 2.1.4質子束曝光 PBW:Proton Beam Writing 9 2.2高分子微流道的製作 10 2.2.1軟微影製程(Soft Lithography) 10 2.2.2奈米壓印(NIL:Nanoimprint Lithography) 11 2.2.3犧牲層模板(sacrificial layer template) 13 第三章 實驗部分 22 3.1矽基微結構模具的製作 22 3.1.1實驗材料與藥品 22 3.1.2實驗儀器與設備 23 3.1.3模具製作 24 3.2 矽微脊結構表面塗佈PDMS 28 3.3微流道製作 30 第四章 結果與討論 40 4.1矽微脊陣列模具的製作 40 4.1.1 ICP 電漿蝕刻製程探討 40 4.1.2 一段式電漿直接蝕刻 41 4.1.3二段式電漿蝕刻 45 4.1.4 改善鋁蝕刻遮罩設計 46 4.2 PDMS微流道製作 48 4.2.1 以矽微脊為模具直接翻製PDMS微流道 48 4.2.2製作PDMS-矽微脊複合結構模具 48 4.2.3 以加壓封裝方式縮減微流道大小 53 第五章 結論 76 第六章 未來工作 78 第七章 參考文獻 80

    1. Madou, M.J. & Raton, B. Fundamentals of microfabrication :the science of miniaturization. (2002).
    2. Manz, A., Graber, N. & Widmer, H.M. Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing. Sensors and Actuators B-Chemical 1, 244-248 (1990).
    3. Cheng, J. & Kricka., L.J. Biochip technology[electronic resource]. (2001).
    4. Heckele, M. & Schomburg, W.K. Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering 14, R1-R14 (2004).
    5. Huh, D. et al. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nature Materials 6, 424-428 (2007).
    6. Hsia, K.J. et al. Collapse of stamps for soft lithography due to interfacial adhesion. Applied Physics Letters 86, - (2005).
    7. Becker, E.W. et al. Production of Separation-Nozzle Systems for Uranium Enrichment by a Combination of X-Ray-Lithography and Galvanoplastics. Naturwissenschaften 69, 520-523 (1982).
    8. Rognert, A. & Eichert, J. The LIGA technique-what are the new opportunities. J. Micromech. Microeng 2, 133-140 (1992).
    9. Williams, K.R. & Muller, R.S. Etch rates for micromachining processing. Journal of Microelectromechanical Systems 5, 256-269 (1996).
    10. Henssge, A. & Acker, J. Chemical analysis of acidic silicon etch solutions I. Titrimetric determination of HNO3, HF, and H2SiF6. Talanta 73, 220-226 (2007).
    11. Moktadir, Z. et al. Etching techniques for realizing optical micro-cavity atom traps on silicon. Journal of Micromechanics and Microengineering 14, S82-S85 (2004).
    12. Sasaki, H., Shikida, M. & Sato, K. Fabrication of densely arrayed Si needles with large height for transdermal drug delivery system application. Ieej Transactions on Electrical and Electronic Engineering 2, 340-347 (2007).
    13. Abdolvand, R. & Ayazi, F. An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon. Sensors and Actuators a-Physical 144, 109-116 (2008).
    14. Jansen, H., de Boer, M., Wensink, H., Kloeck, B. & Elwenspoek, M. The black silicon method. VIII. A study of the performance of etching silicon using SF6/O-2-based chemistry with cryogenical wafer cooling and a high density ICP source. Microelectronics Journal 32, 769-777 (2001).
    15. Winkleman, A., Gotesman, G., Yoffe, A. & Naaman, R. Immobilizing a drop of water: Fabricating highly hydrophobic surfaces that pin water droplets. Nano Letters 8, 1241-1245 (2008).
    16. Groves, T.R. et al. Maskless electron beam lithography: prospects, progress, and challenges. Microelectronic Engineering 61-2, 285-293 (2002).
    17. Bilenberg, B. et al. High resolution 100 kV electron beam lithography in SU-8. Microelectronic Engineering 83, 1609-1612 (2006).
    18. Rajta, I. et al. Proton beam micromachined buried microchannels in negative tone resist materials. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 260, 414-418 (2007).
    19. Xia, Y. Soft lithography: micro-and nanofabrication based on microcontact printing and replica molding. (1996).
    20. Schift, H. Nanoimprint lithography: An old story in modern times? A review. Journal of Vacuum Science & Technology B 26, 458-480 (2008).
    21. Guo, L.J. Nanoimprint lithography: Methods and material requirements. Advanced Materials 19, 495-513 (2007).
    22. Chou, S.Y., Krauss, P.R. & Renstrom, P.J. Imprint of Sub-25 Nm Vias and Trenches in Polymers. Applied Physics Letters 67, 3114-3116 (1995).
    23. Jaszewski, R.W., Schift, H., Schnyder, B., Schneuwly, A. & Groning, P. The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing. Applied Surface Science 143, 301-308 (1999).
    24. Bailey, T.C. Step and flash imprint lithography: An efficient nanoscale printing technology. Journal of Photopolymer Science and Technology 15, 481-486 (2002).
    25. Eijkel, J.C.T., Bomer, J., Tas, N.R. & van den Berg, A. 1-D nanochannels fabricated in polyimide. Lab on a Chip 4, 161-163 (2004).
    26. 曾嘉群. "運用犧牲式模板轉印技術製作奈米噴嘴薄膜之研究".國立成功大學碩士論文 (2007).
    27. Jansen, H., Deboer, M., Legtenberg, R. & Elwenspoek, M. The Black Silicon Method - a Universal Method for Determining the Parameter Setting of a Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching with Profile Control. Journal of Micromechanics and Microengineering 5, 115-120 (1995).
    28. Jansen, H., Deboer, M., Burger, J., Legtenberg, R. & Elwenspoek, M. The Black Silicon Method .2. The Effect of Mask Material and Loading on the Reactive Ion Etching of Deep Silicon Trenches. Microelectronic Engineering 27, 475-480 (1995).
    29. Cantu, T.S. & Caruthers, J.M. Viscometric Properties of Poly(Dimethylsiloxane) Filled with Spherical Silica Particles. Journal of Applied Polymer Science 27, 3079-3088 (1982).
    30. 王英明. "運用高濃度電漿反應性離子蝕刻製作矽基微結構模具並進行高分子微熱成形加工之研究".國立成功大學碩士論文 (2008).

    下載圖示 校內:2012-06-26公開
    校外:2012-06-26公開
    QR CODE