簡易檢索 / 詳目顯示

研究生: 林雅慧
Lin, Ya-Hui
論文名稱: 四萬年來南海深海水團之循環:沉積物中鐵錳氫氧化物的釹同位素
Deep water circulation in the South China Sea during the last 40 kyr:Nd isotopic compositions in sedimentary Fe-Mn oxyhydroxides
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 58
中文關鍵詞: 鐵錳氫氧化物釹同位素南海
外文關鍵詞: Fe-Mn oxyhydroxides, Nd isotope, South China Sea
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 定年技術與質譜分析技術日新月異,各種同位素系統的定年誤差從百萬年尺度往下修正,某些元素系統可達”年”的精準度,造就了第四季氣候變遷研究蓬勃發展。利用海洋洋流系統探討地球氣候長時間尺度與短時間尺度的變遷為一重要的課題。
    本研究選擇南海岩芯SO17940-2與MD052914,岩芯具有高沉積速率,而且位於邊緣海內,可靈敏地記錄到短時間尺度的氣候變遷。使用鹽酸羥胺水溶液萃取出海洋沉積物內的鐵錳氫氧化物,接下來以AG50W-X8和LN樹脂除去主要元素和同重素干擾,純化出僅含釹元素之溶液。最後以HR-ICPMS(高解析度感應耦合電漿質譜儀)量測未經純化前的溶液,獲得稀土元素之分佈模式圖;使用MC-ICPMS(多頻道接受器感應耦合電漿質譜儀)量測純化後的樣品內釹同位素比值。
    結果顯示,鐵錳氫氧化物內稀土元素經過PAAS標準化後的分佈曲線圖具有中稀土元素正異常和Ce正異常的情形,與大西洋地區深海岩芯的鐵錳氫氧化物內稀土元素分佈模式相仿。另外使用標準樣品測試,在HR-ICPMS測量稀土元素過程中,主要元素所造成的基質效應不至於干擾到稀土元素的濃度判定。
    而岩芯SO17940-2中釹同位素比值約在-6~-8之間;MD052914中釹同位素比值約在-8~-9.5之間,在一萬年一千年前(正逢新仙女木冷事件)出現釹同位素比值負異常現象。造成此現象之可能原因為冬季季風增強,陸地出露,造成大量歐亞板塊陸源物質輸入南海,增加較低的釹同位素比值來源;尚有北太平洋中層水輸入南海的通量減弱之情形發生。但是在LGM期間並無釹同位素比值負異常現象產生,其可能原因為:乾冷環境,冬季季風增強,海平面下將約120公尺,造成南海形成半封閉海域,但是此時期的沉積速率低於新仙女木時期;再加上北太平洋洋流系統並無明顯減弱之現象產生,使NPIW輸送進入南海的通量無顯著的改變。

    With the ability to provide very accurate and precise isotopic ratios, mass spectrometry has become as the most important method in the field of radiometric dating. The precision of dating has been hugely improved in the last decade, in some case less than 1 year error can be achieved. These processes stimulate the study of Quaternary climate change. One of the most important subjects is reconstructing long-term and short-term climate by tracing major ocean currents in the past.
    The Nd isotopic compositions of ancient seawater deduced from sedimentary Fe-Mn hydroxides have been used extensively to trace short-term variation in the water masses. Two cores, SO17940-2 and MD052914, used in this study were collected from South China Sea. Due to high sedimentation rate in marginal sea, those cores have a good potential to reconstruct century-scale climate variations over the last 30Ka. The sedimentary Nd isotope compositions were carried out by MC-ICPMS after the HH treatment and ion chromatography separation using AG50W-X8 and LN resins. REE pattern also been measured by a HR-ICPMS. Due to the presence of Ca, Na and Mg, the matrix effects were determined to be insignificant.
    PAAS normalized REE patterns of sedimentary Fe-Mn oxyhydroxides show LREE enrichment and positive Ce anomalies, similar to those in the Atlantic.
    The 143Nd/144Nd ratio is ranging from -6 to -8εNd and has a minimum value in the period of 10~12Ka (Younger Dryas Event) in core SO17940-2;The 143Nd/144Nd ratio is ranging from -8 to -9.5εNd in MD052914. This can be explained by strengthening. Winter monsoon resulted in high flux of terrestrial input from the continent, which is characterized by low 143Nd/144Nd ratio. The other possibility is the weakening of North Pacific Intermediate Water (NPIW) flow into the South China Sea. However, in the last glacial maximum, the negative anomaly Nd isotope did not observed. This probably is due to lower sedimentary rate and no significant change in the strength of NPIW.

    目錄 摘要 I Abstract II 誌謝 III 章節目錄 IV 表目錄 VI 圖目錄 VII 章節目錄 第一章 序論 1 1.1研究背景 1 1.2前人研究 1 1.2.1溫鹽循環 2 1.2.1.1洋流系統中的釹同位素 4 1.2.2海洋沉積物中自生性礦物 8 1.2.2.1海洋沉積物中釹同位素 11 1.2.3末次冰期以來短時間尺度之地質紀錄 11 1.3研究目的 14 第二章 方法與研究區域 15 2.1岩芯地理環境 15 2.1.1 SO17940-2岩芯地理環境 15 2.1.2 MD052914岩芯地理環境 17 2.2樣品純化過程 18 2.2-1樣品前處理方法 18 2.2-2 樹脂層析方法 22 2.3 樣品分析方法 25 2.3.1稀土元素分析方法 25 2.3.2 釹同位素分析方法 27 第三章 結果與討論 29 3.1.技術評估 29 3.1.1前處理與層析過程背景值評估 29 3.1.2樹脂層析技術評估 29 3.1.3 ICPMS技術分析評估 32 3.1.3 MC-ICPMS技術分析評估 36 3.2南海岩芯SO14940-2分析結果 36 3.2.1 稀土元素分佈模式 36 3.2.2 釹同位素分析結果 39 3.3岩芯MD052914分析結果 42 3.4南海地區釹的來源與深海水團之釹同位素分析 44 3.5南海深海水團之釹同位素異常事件 48 第四章 結論 52 參考文獻 53

    一.中文部分
    陳木宏, 塗霞, 鄭范, 顏文 ,湯賢贊, 陸鈞, 王保貴, 盧苗安, 2000. 南海南部近20 萬年沉積序列與古氣候變化關係. 科學通報 45 (5).
    翦知盡, 黃維, 2003. 快速氣候變化與高解析度的深海沉積記錄. 地球科學進展(18) 1001-8166
    二.英文部分
    Abouchami W., Goldstein S.L., Galer S.J.G., Eisenhauer A., Mangini A. Secular changes of lead and neodymium in central Pacific seawater recorded by a Fe–Mn crust. Geochimica et Cosmochimica Acta 61, 3957-3974 (1997).
    Albarede F. and Goldstein S. L. World map of Nd isotopes in sea-floor ferromanganese deposits. Geology 20, 761-763 (1992).
    Amakawa H., Alibo D.S., Nozaki Y. Nd isotopic and REE pattern in the surface waters of the eastern Indian Ocean and its adjacent seas. Geochimica et Cosmochimica Acta 64, 1715-1727 (2000).
    Amakawa H., Nozaki Y., Alibo D. S., Zhang J., Fukugawa K. And Nagai H., Neodymium isotopic variations in Northwest Pacific waters. Geochimica et Cosmochimica Acta 68 (4), 715-727 (2004).
    Anderson R.F., Bacon M.P., Brewer P.G. Removal of 230Th and 231Pa from the open ocean. Earth and Planetary Science Letters 62, 7-23 (1983).
    Arsouze T., Dutay J.-C., Lacan F. and Jeandel C. Modeling the neodymium isotopic composition with a global ocean circulation model. Chemical Geology 239 (1-2), 165-177 (2007).
    Bacon M.P. Tracers of chemical scavenging in the ocean: boundary effects and large scale chemical fractionation, Philos. Trans. R. Soc. Lond., Ser. A 320, 187-200 (1988).
    Balistrieri L., Brewer P.G., Murray J.W. Scavenging residence time of trace metals and surface chemistry of sinking particles in the deep ocean. Deep-Sea Res. 28A, 101-121 (1981).
    Bayon G., German C. R., Boella R. M., Milton J.A., Taylor R. N. and Nesbitt R.W. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology 187 (3-4), 179-199 (2002).
    Bayon G., German C.R., Burton K.W., Nesbitt R.W. and Rogers N. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic disolved REE. Earth and Planetary Science Letters 224 (3-4), 477-492 (2004).
    Bertram C.J. and Elderfield H. The geochemical balance of the rare earth elements and neodymium isotopes in the oceans. Geochimica et Cosmochimica Acta 57, 1957-1986 (1993)
    Blackenburg F. von. Tracing past ocean circulation? Science 286, 1862-1863 (1999).
    Boyle E. A. Cadmium and δ13C paleochemical ocean distributions during the Stage 2 glacial maximum. Annu. Rev. Earth Planet. Sci. 20, 245-87 (1992).
    Broecker W. S., Patzert W. C., Toggweiler J. R., Sturiver M. Hydrography, chemistry and radioisotopes in the Southwest Asian Basins, Journal of Geophysical Research 91 (C12), 14345-14354 (1986).
    Broecker W. S., Takahashi T., Takahashi T. Sources and flow patterns of deep-ocean waters as de-duced from potential temperature, salinity, and ini- tial phosphate concentration. Geophysical Research, 90: 6925-6939 (1985).
    Broecker, W. S. and Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Geochimica et Cosmochimica Acta 53, 2465-2501 (1989).
    Burton K.W., Ling H.-F. and O'Nions R.K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature 386, 382-385 (1997).
    Burton K.W., Lee D.-C., Christensen J.N., Halliday A.N., Hein J.R. Actual timing of neodymium isotopic variations recorded by Fe–Mn crusts in the western North Atlantic. Earth and Planetary Science Letters 171, 149-156 (1999).
    Carles Pelejero. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments.Chemical Geology 200, 89-103 (2003).
    Chao S. -Y., Shaw P. –T., and Wu S. Y. Deep water ventilation in the South China Sea. Deep Sea Research 43 (4), 445-466 (1996).
    Charles C. D. and Fairbanks R. G. Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature 355, 416-419 (1992).
    Charles C. D., Lynch-Stieglitz J., Ninnemann U. S. and Fairbanks R. G. Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth and Planetary Science Letters 142, 19–27 (1996).
    Chen, A. C. –T., Wang S. –L., Wang B. –J., Pai S. –C. Nutrient budgets for the South China Sea basin. Marine Chemistry 75, 281-300 (2001).
    Chester R., Hughes M.J. A chemical technique for the separation of ferromanganese minerals, carbonate minerals and adsorbed trace elements for pelagic sediments. Chemical Geology 2, 249-262 (1967).
    Claude-Ivanaj C., Hofmann A.W., Vlastelic I., Koschinsky A. Recording changes in ENADW composition over the last 340 ka using high-precision lead isotopes in a Fe–Mn crust. Earth and Planetary Science Letters 188, 73-89 (2001).
    Curry, W. B. and Lohmann, G. P. Reduced advection into Atlantic Ocean deep eastern basins during last glaciation maximum. Nature 308, 317-342 (1983).
    Elderfield,1982 Elderfield H., M.J. Greaves. The rare earth elements in seawater. Nature 296, 214-219 (1982).
    Elderfield H. The oceanic chemistry of the rare-earth elements. Philos. Trans. R. Soc. London, Ser. A. 325 ,105-106 (1988).
    Frank M., O’Nions R.K. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth and Planetary Science Letters 158, 121-130 (1998).
    Frank M., Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev. Geophys. 40, 1001 (2002).
    German C.R., Elderfield H. Rare earth elements in the NW Indian Ocean. Geochimica et Cosmochimica Acta 54, 1929-1940 (1990).
    Goldstein S. and Hemming S.R. Long Lived istopic tracers in oceanography, paleoceanography and ice-sheet dynamics. Treatise on Geochemistry 6.17 (6), 453-489 (2003).
    Goldstein S.L. and Jacobsen, S.B. The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chemical Geology 66, 245-272 (1987).
    Gong G. C., Liu K. K. and Pai S. C. The chemical hydrography of the South China Sea west of Luzon and a comparison with the west Philippine Sea. Terrestrial, Atmospheric and Oceanic Sciences 3, 587-602 (1992).
    Greaves M.J., Statham P.J., Elderfield H. Rare earth element mobilization from marine atmospheric dust into seawater. Mar. Chem. 46, 255-260 (1994).
    Greaves M.J., Elderfield H., Sholkovitz E.R. Aeolian sources of rare earth elements to the western Pacific Ocean, Marine Chemistry 68, 31-38 (1999).
    Gutjahr M., Frank M., Stirling C.H., Klemm V., Flierdt T. van de and Halliday A.N. Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments. Chemical Geology 242(3-4), 351-370 (2007).
    Jacobsen S.B. and Wasserburg G.J., Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters 50, 139–155 (1980).
    Jeandel C. Concentration and isotopic composition of neodymium in the South Atlantic Ocean. Earth and Planetary Science Letters 117 (3-4) ,581-591 (1993).
    Jeandel C., Bishop J.K., Zindler A. Exchange of neodymium and its isotopes between seawater and small and large particles in the Sargasso Sea, Geochimica et Cosmochimica Acta 59, 535-547 (1995).
    Jeandel C., Arsouze T., Lacan F., Téchiné P., Dutay J.-C. Nd isotopic compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins. Chemical Geology 239, 156-164 (2007).
    Labeyrie L. D., Labracherie M., Gorfti N., Pichon J. J., Vautravers M., Arnold M., Duplessy J. C., Paterne M., Michel E., Duprat J., Caralp M. and Turon J. L. Hydrographic changes of the Southern Ocean (southeast Indian sector) over the last 230 kyr. Paleoceanography 11, 57-76 (1996).
    Lacan F., Jeandel C. Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns. Earth and Planetary Science Letters 186, 497-512 (2001).
    Lacan Francois and Jeande Catherine, Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface. Earth and Planetary Science Letters 232, 245-257 (2005).
    Lea, D. W. and Boyle, E. A. Foraminiferal reconstruction of barium distributions in water masses of the glacial ocean. Paleoceanography 5, 719-742 (1990).
    Li Q., Zhao Q., Zhong G., Jian Z., Tian J., Cheng X., Wang P., Chen M. Deepwater Ventilation and Stratification in the Neogene South China Sea.Journal of China University of Geoscience 18, 95-108 (2007).
    Li X. h., Wei G., Shao L., Liu Y., Liang X., Jian Z., Sun M., Wang P. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia. Earth and Planetary Science Letters 211, 207-220 (2003).
    Li Y.-H. Distribution patterns in the ocean: a synthesis, Geochimica et Cosmochimica Acta 55, 3223-3240 (1991).
    Ling H.F., Burton K.W., O’Nions R.K., Kamber B.S., von Blackenburg F., Gibb A.J., Hein J.R. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth and Planetary Science Letters 146, 1-12 (1997).
    Liu Z., Colin C., Huang W., Le K. P., Tong S., Chen T., Trentesaux A. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry Geophysics Geosystems 8 (5), (2007).

    下載圖示 校內:2011-08-19公開
    校外:2013-08-19公開
    QR CODE