簡易檢索 / 詳目顯示

研究生: 陳姿樺
Chen, Tz-Hua
論文名稱: 製備多孔性碳化矽陶瓷之研究
Study on preparation of porous SiC ceramics
指導教授: 申永輝
Shen, Yun-Hwei
溫紹炳
Wen, Shaw-Bing
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 碳化矽陶瓷高嶺土孔洞生成劑燒結
外文關鍵詞: silicon carbide, sinter, pore former, Kaolinite
相關次數: 點閱:145下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討添加不同含量的高嶺土於三種不同粒徑之SiC 粉體
    中,固定PVA 配比為5 wt%為黏結劑與孔洞生成劑,製備多孔性碳
    化矽陶瓷。燒結時以Al2O3 粉末鋪蓋坯體,置於高溫爐中,以3℃/min的速度升溫至不同燒結溫度及不同持溫時間,成功在常壓低溫下製備多孔碳化矽陶瓷體。
    研究中以高嶺土原礦,加水膨潤後與SiC 起始粉末混合,再加入黏結劑與孔洞生成劑PVA,乾燥後研磨造粒,造粒粉體以單軸加壓到50MPa,可得生坯,將坯體埋入Al2O3 粉末中,以500℃燒除PVA 生成孔洞後,再加溫至1200℃、1300℃、1400℃持溫1、3、5hr 進行燒結,得到不同之碳化矽燒結體。燒結體藉由XRD 分析主要結晶相及二次相成份及數量,以SEM 觀察燒結體表面顯微結構、孔洞大小、形狀以及連通情況,以阿基米得法求得燒結體視密度及開放性空孔率,以萬能試驗機測得燒結體抗壓強度,並以熱傳導分析儀量測試片熱傳導值。
    研究結果顯示,碳化矽燒結體在三種燒結溫度,持溫1、3、5 小時,皆可得到21%以上的開放性空孔率,而其開放性空孔率與燒結體視密度及抗壓強度皆呈現同步變化的趨勢,在1300℃持溫3hr 的燒結條件下,以試片12S5K 的開放性空孔率26.318%為最高值,而在相同條件下探討其熱傳導值,以試片4S5K 較佳,其視密度為1.7306
    g/cm3、開放性空孔率為22.237 %、抗壓強度為9.11 Mpa、熱傳導值
    為10.3 W/m*K。

    The study was putting different quantities of Kaolinite into three different kinds of particles of powder will produce the porous SiC ceramics. We used the binder and pore former with the distribution rate of the fixed PVA, which is 5 wt%. The bulk is covered with Al2O3 in the heating furnace while sintering, we heat the temperature by three degrees centigrade per minute to different sintering temperatures and different heating time. We have then produced the porous SiC ceramics successfully within a low constant temperature.
    First, we added the Kaolinite and water to make it wet and mixed it with the power of SiC. We then added the binder and pore former PVA. After drying, we ground it into a powder, the powder was uniaxially pressed at 50 Mpa and the result was green bodies. Cover up the green
    bodies with Al2O3 powder, burn out the PVA to become pore by 500 degrees centigrade, sinter them and heat the temperature to 1200℃, 1300℃, and 1400 for 1 hour, 3hours and 5 hours. Therefore, the result was different SiC sintered bodies. We used XRD to identify the produced
    phases and SEM to observe the fractured surfaces to discover the grain morphology of sintered bodies. By using
    the Archimedes, we got the Apparent Density and the open pore. We got the compressive strength by the Material Test System as well.
    The research showed that SiC sintered bodies could get the open pore above 21% in three different sintering temperatures for one hour, three hours and five hours individually. Under the condition of sintering at 1300℃ for 3hrs, the open pore and the Apparent Density and the compressive strength are showing that there is a trend in the synchronized variation. They had the same trend in the synchronized variation.The Open pore in 26.318% of the sample of 12S5K is the highest rate, to discover the thermal conductivity in the same condition; we found out
    that the sample of 4S5K has the best result. Its Apparent Density is 1.7306 g/cm3 , the Open pore is 22.237 %, the compressive strength is9.11 Mpa, and the thermal conductivity is 10.3 W/m*K.

    總目錄 摘要..... ..............................................I Abstract. ............................................III 誌謝..... ..............................................V 總目錄... ............................................VII 表目錄... ..............................................X 圖目錄... .............................................XI 第一章緒論........ .....................................1 1.1前言........... .....................................1 1.2碳化矽特性..... .....................................3 1.3碳化矽的製造... .....................................5 1.4多孔陶瓷體..... .....................................6 1.5研究動機與目的. .....................................7 1.6文獻回顧與整理. .....................................7 第二章理論基礎.........................................11 2.1添加劑對燒結碳化矽的影響............................11 2.2高嶺土特性..........................................13 2.3燒結過程及理論......................................14 2.3.1燒結的基本原理....................................14 2.3.2幾何形狀的考量....................................15 2.4散熱片原理..........................................23 第三章實驗方法.........................................27 3.1實驗材料............................................27 3.2實驗構想、流程與步驟................................27 3.2.1起始粉末之混合....................................28 3.2.2燒結粉體之壓錠....................................29 3.2.3燒結體的製備......................................29 3.3實驗設備............................................31 3.4性質分析之儀器......................................33 3.4.1粉體之分析........................................33 3.4.2燒結體之分析......................................34 第四章結果與討論.......................................37 4.1起始粉末之性質分析結果..............................37 4.1.1晶相分析..........................................37 4.1.2顯微結構分析......................................38 4.2碳化矽燒結試片之晶相分析結果與討論................. 40 4.3碳化矽燒結試片體密度分析結果........................44 4.4碳化矽燒結試片視密度與開放性空孔率之分析結果........46 4.4.1視密度分析結果....................................46 4.4.2開放性空孔率(Open pore)分析結果...................48 4.5碳化矽燒結體之抗壓強度..............................50 4.6碳化矽燒結體顯微結構分析............................52 4.7多孔性碳化矽燒結體熱傳遞之結果與討論................61 4.8綜合討論............................................62 第五章 結論與建議......................................64 5.1結論................................................64 5.2建議................................................66 第六章 參考文獻........................................68 表目錄 表1-1 碳化矽腐蝕試驗表..................................4 表1-2 一般結構陶瓷碳化矽物理與化學特性..................5 表2-1 物質在燒結初期不同的傳遞途徑.....................20 表3-1 製備多孔性碳化矽陶瓷所需之化學試劑...............27 表3-2 各種碳化矽胚體起始碳化矽粉體粒徑與高嶺土含量表...29 表3-3 製備多孔性碳化矽陶瓷片燒結所需之實驗設備.........32 表4-1 碳化矽燒結體在1200℃持溫不同時間體密度...........45 表4-2 碳化矽燒結體在1300℃持溫不同時間體密度...........45 表4-3 碳化矽燒結體在1400℃持溫不同時間體密度...........46 表4-4 碳化矽燒結體在1200℃持溫不同時間視密度...........47 表4-5 碳化矽燒結體之熱傳導值...........................61 表4-6 本研究碳化矽燒結製程與文獻資料比較表.............62 圖目錄 圖1-1 傳統LED散熱模組外觀...............................2 圖1-2 (a)本研究製備之多孔性碳化矽陶瓷外觀(b)應用多孔性陶瓷散熱模組外觀............................................2 圖1-3 新舊LED散熱模組示意比較圖.........................2 圖1-4 SiC基本構造圖.....................................4 圖1-5 6H-SiC結晶構造圖..................................4 圖1-6 網狀SiC陶瓷微結構................................10 圖1-7 多孔性SiC表面微結構..............................10 圖2-1 Si-C系相圖.......................................12 圖2-2 Al2O3-SiO2 系的相圖..............................12 圖2-3 高嶺土結構圖.....................................14 圖2-4 燒結過程中可能的燒結機構.........................20 圖2-5 燒結過程的三個階段:(a)顆粒之間互相接觸(b)燒結初期(c)燒結中期(d)燒結後期....................................21 圖2-6 傳統液相燒結的三個階段...........................22 圖2-7 液相燒結中溶解析出過程中緻密化的三種機構(a)顆粒接觸面 的平滑化(b)小顆粒的溶解(c)固態擴散................23 圖2-8 晶粒成長時孔隙的填充.............................23 圖2-9 熱對流效應.......................................26 圖3-1 多孔性碳化矽陶瓷燒結示意圖.......................30 圖3-2 實驗流程.........................................31 圖4-1 三種不同粒徑碳化矽起始原料之晶相分析.............37 圖4-2 馬來西亞高嶺土原礦之晶相分析.....................38 圖4-3 碳化矽之SEM顯微結構圖(a)#400 SiC(b)#600 SiC(c)#1200 SiC....................................................39 圖4-4 碳化矽試片在1300℃持溫3小時之晶相分析............42 圖4-5 碳化矽試片4S5K與4S15K在1400℃持溫不同時間之晶相分 析.....................................................42 圖4-6 碳化矽試片6S5K、6S10K與6S15K在1400℃持溫3小時之晶相分析.....................................................43 圖4-7 碳化矽試片6S5K、6S10K與6S15K在不同燒結溫度,相同持溫時間之晶相分析.........................................43 圖4-8 碳化矽試片在1300℃持溫不同時間之視密度比較圖.....47 圖4-9 碳化矽試片在1400℃持溫不同時間之視密度比較圖.....48 圖4-10 碳化矽試片在1300℃持溫不同時間之開放性空孔率....49 圖4-11 碳化矽試片在1400℃持溫不同時間之開放性空孔率....50 圖4-12 碳化矽試片在1300℃持溫3小時之抗壓強度...........51 圖4-13 碳化矽試片在1300℃持溫3小時之抗壓強度與開放性空孔率關係圖.................................................52 圖4-14 4S系列之燒結試片在1300℃持溫3小時之表面微結構圖(a)4S5K(b)4S10K(c)4S15K...................................55 圖4-15 6S系列之燒結試片在1300℃持溫3小時之表面微結構圖(a)6S5K(b)6S10K(c)6S15K...................................56 圖4-16 12S系列之燒結試片在1300℃持溫3小時之表面微結構圖(a)12S5K(b)12S10K(c)12S15K................................57 圖4-17 4S系列之燒結試片在1400℃持溫3小時之表面微結構圖 (a)4S5K(b)4S10K(c)4S15K................................58 圖4-18 6S系列之燒結試片在1400℃持溫3小時之表面微結構圖(a)6S5K(b)6S10K(c)6S15K...................................59 圖4-19 12S系列之燒結試片在1400℃持溫3小時之表面微結構圖(a)12S5K(b)12S10K(c)12S15K................................60

    1.汪建民等,陶瓷技術手冊,經濟部技 術部、中華民國粉末冶金學會、中華民國產業發展協會出版,760-763
    2.黃忠良,工程陶瓷(基礎研究‧應用技術),復漢出版社印行,16-18
    3.Koichi Yamada and Masahide Mohri , ”Properties and Applications of Silicon Carbide Ceramics “, Silicon 4.Carbide Ceramic-1,Elsevier,London (1991)13-44
    5.林博文,89年工程陶瓷應用技術研討會論文集,國科會工程科技推展中心、國立成功大學材料科學及工程學系印行,155
    6.P. Kennedy, B. North, Proc. Br. Ceram. Soc. 33, 1983, 1.
    7.L. S. Hong, Z. L. Liu, Ind. Eng. Chem. Res. 37, 1998, 3602.
    8.S. Yajima, J. Hayashi, M. Omori, Chem. Lett. 1975, 931
    9.S. Yajima, Y. Hasegawa, J. Hayashi, M. Iimura, J. Mater. Sci. 13,1978, 2569.
    10.Y. Hasegawa, M. Iimura, S. Yajima, J. Mater. Sci. 15, 1980, 720.(a) F. Hatakeyama, S.Kanzaki, J. Am. Ceram. Soc. 73, 1990, 2107(b) I. S. Seog, C. H. kim, J. Mater. Sci. 28, 1993, 3227
    11.(a) W.Zhu, G. Y. Zhao, V. Revankaar, V.Hlavacek, J. Mater. Sci.28, 1993, 659(b) J. Y. Guo, F. Gitzhofr, M. I. Boulos, J. Mater. Sci, 30, 1995, 5589
    12.P. D. Ramesh, B. Vaidhyanathan, M. Ganguli, R. J. Rao, J. Mater.Res. 9, 1994, 3025
    13.劉典謨,多孔陶瓷簡介,材料社會,第七十七期,1993,P41-42
    14.K.T. Koho , NGK Spark Plug Co.Ltd.Jpn. ,JP59,83,1984,972
    15.J.-F. Yang, J. Am. Ceram. Soc. 84 , 7, 2001, 1639-1641
    16.H.T. Wang, Mater. Res. Bull. 32, 12, 1997, 1705-1712
    17.Y. Gu, Ceram. Int. 25 1999 705-709
    18.Y. Tanabe, J. Mater. Res. 14, 4, 1999, 1515-1523
    19.O. Lyckfeldt, J.M.F. Ferreira, J. Eur. Ceram. Soc. 18, 1998 131-140
    20.R.C.E. Guy, J.R.G. Evans, Br. Ceram. Trans. 96,4,1997,165-169
    21.W.J. Chao, K.S. Chou, Key Eng. Mater. 114 ,1995, 93-108
    22.D.M. Liu, J. Mater. Sci. Lett. 15,1996, 419-421
    23.陳嘉勳等, 高分子粉末燒結成型技術,遠東技術學院,2005
    24.B.-H Kim and Y.-H. Na ,Ceramics International .21,1995, 381-384.
    25.J. H. She, Z.Y. Deng, J. -D. T. Ohji , Journal of materials science , 37,2002, 3615-3622
    26.X. Zhu*, D. Jiang, S. Tan, Material Science and Engineering , A323, 2002, 232-238
    27.W. Chi, D. Jiang, Z. Huang, S.Tan, Ceramics International, 30,2004,869-874
    28.J. Ihle*, M. Herrmann, J. Adler, Journal of the European Ceramic Society ,25, 2005, 987-995
    29.S. Zhu*, S. Ding, H. Xi, R. Wang, Materials Letters, 59, 2005, 595-597
    30.S. Ding, Y.-P Zeng, D. Jiang, Material Science and Engineering, A425, 2006, 326-329
    31.X. Yao, S. Tan, Z. Huang, D. Jiang, Ceramics International, 32, 2006, 137-142
    32.S. Zhu, S. Ding, H. Xi, Q. Li, R. Wang, Ceramics International, 33, 2007, 115-118
    33.S. Wu, N. Claussen , ibid. 74, 1991, 2460
    34.M. D. Sacks, K. Wang, G. W. Scheiffele , N. Bozkurt, ibid. 80, 1997, 663
    35.潘德華, 陶瓷材料學, 新文豐出版公司, 360
    36.陳永鋒, 國立成功大學材料及工程學博士論文,2004
    37.G. W. Brindley , M. Nakahira, The kaolinite mullite reaction series: I. Asurvey of oustanding problems, J. Am. Ceram. Soc., 42 (1959) 311.
    38.G. W. Brindley , M. Nakahira, The kaolinite mullite reaction series: II.Metakaolin, J. Am. Ceram. Soc., 42 (1959) 314.
    39.G. W. Brindley , M. Nakahira, The kaolinite mullite reaction series: III.The high-temperature phases, J. Am. Ceram. Soc., 42 (1959) 319.
    40.梁育彰,鈦酸鋅之低溫共燒與介電性質之研究,國立成功大學材料科學及工程學碩士論文,2005
    41.R. L Coble, Sintering Crystalline Solids. I. Intermediate and final State Diffusion Models, J. Appl. Phy, 32,1961, 787
    42.R.L Coble, “Sintering Crystalline Solids. I. Intermediate and final State Diffusion Models” J. Appl. Phy. 32,1961,787
    43.C. Greskovich, J. H. Rosolowski,”Sintering of Covalent Solids” J. Am. Ceram. Soc. 59,1976, 336
    44.D. W. Budworth, ”Theory of Pore Closure during Sintering” Trans. Brit. Ceram. Soc, 69, 1970, 29
    45.C. Herring, “Effect of Change of Scale on Sintering Phenomena” J.Appl. Phys., 21, 1950, 301
    46.F. F. Lang, “Sinterability of Agglomerate Powder” J. Am. Ceram. Soc., 67, 1984, 83
    47.W. D. Kingery, M. D. Marasimham, “Densification During Sintering Presence of a Liquid Phase Sintering” J.appl. Phys. 31[3], 1959, 307
    48.R.M. German, “Liquid Phase Sintering” Plenum Press Inc. 1985, 6-8
    49.李冠宗”熱傳遞”文京圖書有限公司,1985
    50.經濟部工業局”絕熱和熱傳材料之技術手冊” 2002,3-4
    51.余家杰”電子元件散熱片研究規劃”, 2002

    下載圖示 校內:2008-07-20公開
    校外:2010-07-20公開
    QR CODE