| 研究生: |
陳姿樺 Chen, Tz-Hua |
|---|---|
| 論文名稱: |
製備多孔性碳化矽陶瓷之研究 Study on preparation of porous SiC ceramics |
| 指導教授: |
申永輝
Shen, Yun-Hwei 溫紹炳 Wen, Shaw-Bing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 碳化矽陶瓷 、高嶺土 、孔洞生成劑 、燒結 |
| 外文關鍵詞: | silicon carbide, sinter, pore former, Kaolinite |
| 相關次數: | 點閱:145 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討添加不同含量的高嶺土於三種不同粒徑之SiC 粉體
中,固定PVA 配比為5 wt%為黏結劑與孔洞生成劑,製備多孔性碳
化矽陶瓷。燒結時以Al2O3 粉末鋪蓋坯體,置於高溫爐中,以3℃/min的速度升溫至不同燒結溫度及不同持溫時間,成功在常壓低溫下製備多孔碳化矽陶瓷體。
研究中以高嶺土原礦,加水膨潤後與SiC 起始粉末混合,再加入黏結劑與孔洞生成劑PVA,乾燥後研磨造粒,造粒粉體以單軸加壓到50MPa,可得生坯,將坯體埋入Al2O3 粉末中,以500℃燒除PVA 生成孔洞後,再加溫至1200℃、1300℃、1400℃持溫1、3、5hr 進行燒結,得到不同之碳化矽燒結體。燒結體藉由XRD 分析主要結晶相及二次相成份及數量,以SEM 觀察燒結體表面顯微結構、孔洞大小、形狀以及連通情況,以阿基米得法求得燒結體視密度及開放性空孔率,以萬能試驗機測得燒結體抗壓強度,並以熱傳導分析儀量測試片熱傳導值。
研究結果顯示,碳化矽燒結體在三種燒結溫度,持溫1、3、5 小時,皆可得到21%以上的開放性空孔率,而其開放性空孔率與燒結體視密度及抗壓強度皆呈現同步變化的趨勢,在1300℃持溫3hr 的燒結條件下,以試片12S5K 的開放性空孔率26.318%為最高值,而在相同條件下探討其熱傳導值,以試片4S5K 較佳,其視密度為1.7306
g/cm3、開放性空孔率為22.237 %、抗壓強度為9.11 Mpa、熱傳導值
為10.3 W/m*K。
The study was putting different quantities of Kaolinite into three different kinds of particles of powder will produce the porous SiC ceramics. We used the binder and pore former with the distribution rate of the fixed PVA, which is 5 wt%. The bulk is covered with Al2O3 in the heating furnace while sintering, we heat the temperature by three degrees centigrade per minute to different sintering temperatures and different heating time. We have then produced the porous SiC ceramics successfully within a low constant temperature.
First, we added the Kaolinite and water to make it wet and mixed it with the power of SiC. We then added the binder and pore former PVA. After drying, we ground it into a powder, the powder was uniaxially pressed at 50 Mpa and the result was green bodies. Cover up the green
bodies with Al2O3 powder, burn out the PVA to become pore by 500 degrees centigrade, sinter them and heat the temperature to 1200℃, 1300℃, and 1400 for 1 hour, 3hours and 5 hours. Therefore, the result was different SiC sintered bodies. We used XRD to identify the produced
phases and SEM to observe the fractured surfaces to discover the grain morphology of sintered bodies. By using
the Archimedes, we got the Apparent Density and the open pore. We got the compressive strength by the Material Test System as well.
The research showed that SiC sintered bodies could get the open pore above 21% in three different sintering temperatures for one hour, three hours and five hours individually. Under the condition of sintering at 1300℃ for 3hrs, the open pore and the Apparent Density and the compressive strength are showing that there is a trend in the synchronized variation. They had the same trend in the synchronized variation.The Open pore in 26.318% of the sample of 12S5K is the highest rate, to discover the thermal conductivity in the same condition; we found out
that the sample of 4S5K has the best result. Its Apparent Density is 1.7306 g/cm3 , the Open pore is 22.237 %, the compressive strength is9.11 Mpa, and the thermal conductivity is 10.3 W/m*K.
1.汪建民等,陶瓷技術手冊,經濟部技 術部、中華民國粉末冶金學會、中華民國產業發展協會出版,760-763
2.黃忠良,工程陶瓷(基礎研究‧應用技術),復漢出版社印行,16-18
3.Koichi Yamada and Masahide Mohri , ”Properties and Applications of Silicon Carbide Ceramics “, Silicon 4.Carbide Ceramic-1,Elsevier,London (1991)13-44
5.林博文,89年工程陶瓷應用技術研討會論文集,國科會工程科技推展中心、國立成功大學材料科學及工程學系印行,155
6.P. Kennedy, B. North, Proc. Br. Ceram. Soc. 33, 1983, 1.
7.L. S. Hong, Z. L. Liu, Ind. Eng. Chem. Res. 37, 1998, 3602.
8.S. Yajima, J. Hayashi, M. Omori, Chem. Lett. 1975, 931
9.S. Yajima, Y. Hasegawa, J. Hayashi, M. Iimura, J. Mater. Sci. 13,1978, 2569.
10.Y. Hasegawa, M. Iimura, S. Yajima, J. Mater. Sci. 15, 1980, 720.(a) F. Hatakeyama, S.Kanzaki, J. Am. Ceram. Soc. 73, 1990, 2107(b) I. S. Seog, C. H. kim, J. Mater. Sci. 28, 1993, 3227
11.(a) W.Zhu, G. Y. Zhao, V. Revankaar, V.Hlavacek, J. Mater. Sci.28, 1993, 659(b) J. Y. Guo, F. Gitzhofr, M. I. Boulos, J. Mater. Sci, 30, 1995, 5589
12.P. D. Ramesh, B. Vaidhyanathan, M. Ganguli, R. J. Rao, J. Mater.Res. 9, 1994, 3025
13.劉典謨,多孔陶瓷簡介,材料社會,第七十七期,1993,P41-42
14.K.T. Koho , NGK Spark Plug Co.Ltd.Jpn. ,JP59,83,1984,972
15.J.-F. Yang, J. Am. Ceram. Soc. 84 , 7, 2001, 1639-1641
16.H.T. Wang, Mater. Res. Bull. 32, 12, 1997, 1705-1712
17.Y. Gu, Ceram. Int. 25 1999 705-709
18.Y. Tanabe, J. Mater. Res. 14, 4, 1999, 1515-1523
19.O. Lyckfeldt, J.M.F. Ferreira, J. Eur. Ceram. Soc. 18, 1998 131-140
20.R.C.E. Guy, J.R.G. Evans, Br. Ceram. Trans. 96,4,1997,165-169
21.W.J. Chao, K.S. Chou, Key Eng. Mater. 114 ,1995, 93-108
22.D.M. Liu, J. Mater. Sci. Lett. 15,1996, 419-421
23.陳嘉勳等, 高分子粉末燒結成型技術,遠東技術學院,2005
24.B.-H Kim and Y.-H. Na ,Ceramics International .21,1995, 381-384.
25.J. H. She, Z.Y. Deng, J. -D. T. Ohji , Journal of materials science , 37,2002, 3615-3622
26.X. Zhu*, D. Jiang, S. Tan, Material Science and Engineering , A323, 2002, 232-238
27.W. Chi, D. Jiang, Z. Huang, S.Tan, Ceramics International, 30,2004,869-874
28.J. Ihle*, M. Herrmann, J. Adler, Journal of the European Ceramic Society ,25, 2005, 987-995
29.S. Zhu*, S. Ding, H. Xi, R. Wang, Materials Letters, 59, 2005, 595-597
30.S. Ding, Y.-P Zeng, D. Jiang, Material Science and Engineering, A425, 2006, 326-329
31.X. Yao, S. Tan, Z. Huang, D. Jiang, Ceramics International, 32, 2006, 137-142
32.S. Zhu, S. Ding, H. Xi, Q. Li, R. Wang, Ceramics International, 33, 2007, 115-118
33.S. Wu, N. Claussen , ibid. 74, 1991, 2460
34.M. D. Sacks, K. Wang, G. W. Scheiffele , N. Bozkurt, ibid. 80, 1997, 663
35.潘德華, 陶瓷材料學, 新文豐出版公司, 360
36.陳永鋒, 國立成功大學材料及工程學博士論文,2004
37.G. W. Brindley , M. Nakahira, The kaolinite mullite reaction series: I. Asurvey of oustanding problems, J. Am. Ceram. Soc., 42 (1959) 311.
38.G. W. Brindley , M. Nakahira, The kaolinite mullite reaction series: II.Metakaolin, J. Am. Ceram. Soc., 42 (1959) 314.
39.G. W. Brindley , M. Nakahira, The kaolinite mullite reaction series: III.The high-temperature phases, J. Am. Ceram. Soc., 42 (1959) 319.
40.梁育彰,鈦酸鋅之低溫共燒與介電性質之研究,國立成功大學材料科學及工程學碩士論文,2005
41.R. L Coble, Sintering Crystalline Solids. I. Intermediate and final State Diffusion Models, J. Appl. Phy, 32,1961, 787
42.R.L Coble, “Sintering Crystalline Solids. I. Intermediate and final State Diffusion Models” J. Appl. Phy. 32,1961,787
43.C. Greskovich, J. H. Rosolowski,”Sintering of Covalent Solids” J. Am. Ceram. Soc. 59,1976, 336
44.D. W. Budworth, ”Theory of Pore Closure during Sintering” Trans. Brit. Ceram. Soc, 69, 1970, 29
45.C. Herring, “Effect of Change of Scale on Sintering Phenomena” J.Appl. Phys., 21, 1950, 301
46.F. F. Lang, “Sinterability of Agglomerate Powder” J. Am. Ceram. Soc., 67, 1984, 83
47.W. D. Kingery, M. D. Marasimham, “Densification During Sintering Presence of a Liquid Phase Sintering” J.appl. Phys. 31[3], 1959, 307
48.R.M. German, “Liquid Phase Sintering” Plenum Press Inc. 1985, 6-8
49.李冠宗”熱傳遞”文京圖書有限公司,1985
50.經濟部工業局”絕熱和熱傳材料之技術手冊” 2002,3-4
51.余家杰”電子元件散熱片研究規劃”, 2002