簡易檢索 / 詳目顯示

研究生: 吳耀文
Wu, Yao-Wen
論文名稱: 高速鐵路車輛轉向架於彎曲軌道運動之動態分析
Dynamic Stability Analysis of High Speed Railway Vehicle Truck on Curved Tracks
指導教授: 李森墉
Lee, Sen-Yong
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 99
中文關鍵詞: 蛇行穩定性啟發式非線性潛滑模型十二個自由度
外文關鍵詞: twelve degrees of freedom, heuristic nonlinear creep model, hunting stability
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   關於軌道車輛的穩定性及脫軌行為分析,至今已有相當數量的論文發表,就穩定性而言,大多數論文把輪軸與鐵軌的接觸力簡化為線性後,再討論車輛的Hunting行為,並未考慮垂向運動與非線性參數,不幸地,車輛的垂向運動與非線性參數卻是造成車輛脫軌的重要指標,所以對系統的穩定性具有相當程度的影響。在本論文中,主要將針對行駛於彎曲軌道上之車輛進行動態的穩定性及脫軌行為分析。探討穩定性上以Liapunov`s indirect method理論來分析系統臨界速度大小,並以數值積分法Runge-Kutta order four method驗證此分析結果的正確性。而在脫軌分析上則以Nadal’s判斷準則來求得車輛的脫軌係數。經由數值分析所得到的圖形,本文將討論轉向架之各個參數對臨界速度及脫軌係數之間的關係,藉此更加瞭解以及掌握軌道車輛的穩定性與安全性。

      Many Papers about stability and derailment behavior analysis of railway vehicle have been presented up to now. For stability, after contact force between rail and wheel was simplified to linearity, the Hunting behavior of vehicle was discussed but not considered vertical motion and nonlinearities in most of papers. Unfortunately, vertical motion and nonlinearities of vehicle system are the important factors in derailment behavior, so it does affect stability of system very much. We will probe the running stability and derailment behavior of railway vehicle moving on curved tracks in this paper. In the discussion of stability, Liapunov’s indirect method theory was used to analyze critical speed of the system as well as Runge Kutta order four method was used to proof the correction of the result. In derailment analysis, Nadal’s criterion was used to get the derailment quotient of vehicle system. From the diagram of numerical analysis in this paper, critical speed and derailment quotient will be discussed about the relation to each parameter of truck, so as to realize the stability and safety of vehicle and get them in control.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 符號說明 XI 第一章 緒論 1 1-1 問題描述 1 1-2 文獻回顧 3 1-3 研究動機及本文架構 6 第二章 車輪與鋼軌間之滾動接觸理論 7 2-1 簡介 7 2-2 潛滑率 7 2-3 車輪與鋼軌的滾動接觸理論 10 2-3-1 Kalker線性理論 11 2-3-2 Heuristic非線性潛滑理論 12 第三章 運動方程式的建立 15 3-1 簡介 15 3-2 輪軸組及框架的運動方程式 16 3-2-1 輪組組 16 3-2-2 框架 23 3-3 外力項 24 3-3-1 潛滑力 26 3-3-2 正向力 30 3-3-3 懸吊力 31 3-3-4 凸緣力 32 3-4 建立運動方程式 34 第四章 穩定性理論 36 4-1 簡介 36 4-2 Lyapunov’s indirect method穩定性理論 36 4-3 Lyapunov’s indirect method之應用 37 4-4 Lyapunov’s indirect method之準確性 43 4-5 分析結果與文獻之比較 45 第五章 脫軌理論 47 5-1 前言 47 5-2 脫軌判斷準則 47 5-2-1 Nadal脫軌準則 47 5-2-2 Weinstock脫軌準則 49 5-2-3 輪重減載率脫軌準則 51 第六章 結果與討論 53 6-1 系統相關參數對動態穩定性的影響 53 6-2 線性與非線性潛力對於車輛動態穩定性的影響 56 6-3 不同自由度之間對於車輛動態穩定性的影響 57 6-4 相關參數對脫軌係數的影響 59 第七章 結論 90 參考文獻 92

    [1]. A. O. Gilchrist, “The long road to solution of the railway hunting and curving problems,” Proc. Instn. Mech. Engrs. Vol.212 Part F, pp.219-226, 1998
    [2]. Cherchas, D. B., “Derailment of Railway Wheel Climb Probability Based on the Derailment Coefficient,” Journal of Franklin Institute, vol.312, pp.31-40, 1981.
    [3]. Cherchas, D. B., English, G. W. and et al., “Prediction of the Probability of Rail Vehicle Derailment During Crossing Collision,” Journal of Dynamic Systems, Measurement, and Control. Transactions of ASME, vol.104, pp.119-132, 1982.
    [4]. Hans True, “Dynamics of rolling wheelset,” Appl. Mech. Rev., vol.46, no.7, pp.438-444, 1993.
    [5]. Hajime WAKUI, “A Study on Dynamic Interaction Analysis for Railway Vehicles and Structures Mechanical model and practical analysis method,” QR of RTRI, vol.35, pp.96-104, 1994.
    [6]. J. K. Hedrick, ”Stability and Curving Mechanics of Rail Vehicles,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, vol. 103, pp181-190, 1981.
    [7]. M. Vidyasager, “Nonlinear Systems Analysis,” Prentice-Hall, 1978.
    [8]. M. Nó and J. K. Hedrick, “High Speed Stability for Rail Vehicles Considering Varying Conicity and Creep Coefficients,” Vehicle Systems Dynamics, vol. 13, pp.299-313, 1984.
    [9]. Masaki, MATSUO., “Quasi-Static Derailment of a Wheelset,” QR of RTRI, vol.27, pp.94-97, 1986.
    [10]. Masayuki, MIYAMOTO., “Mechanism of Derailment Phenomena of Railway Vehicles,” QR of RTRI, 1996, vol.37, pp. 147-155.
    [11]. M. Shah, M. Thirumalai, K. Cui, P. McGirt and I. Haque, “Symbolic methods for modeling rail vehicle systems,” Int. J. of Vehicle Design, vol.18, no. 5, pp.487-517, 1997.
    [12]. Mehdi Ahmadian and Shaopu Yang, “Effect of System Nonlinearities on locomotive Bogie Hunting Stability” Vehicle System Dynamics, vol. 29, pp.366-384, 1998.
    [13]. Masaki, MATSUO., Hiroaki, ISHIDA., “Safety Criteria for Evaluation of the Railway Vehicle Derailment,” QR of RTRI, vol.40, pp.18-25, 1999.
    [14]. Rao V. Dukkipati and Vijay K. Garg, “Dynamics of Railway Vehicle Systems,” Acaemic Press, 1984.
    [15]. Richard L. Burden and J. Douglas Faires, Numerical Analysis, Brooks/Cole, 1997.
    [16]. Sweet, L. M. and Karmel, A., “Evaluation of Time-Duration Dependent Wheel Load Criteria for Wheelclimb Derailment,” Journal of Dynamic Systems, Measurement, and Control. Transactions of ASME., vol.103, pp.219-227, 1981.
    [17]. Sweet, L. M. and Karmel, A., “Wheelset Mechanics During Wheelclimb Derailment,” Journal of Applied Mechanics. Transactions of ASME., vol.51, pp.680-686, 1984.
    [18]. Suda, Y., “High Speed Stability and Curving Performance of Longi-tudinally Unsymmetric Trucks with Semi-active Control,” Vehicle Systems Dynamics, 23, pp.29-52, 1994.
    [19]. S. Y. Lee, and Y. C. Cheng, “Nonlinear hunting stability and analysis of high-speed railway vehicles on curved tracks,” Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol.10, No.4, 2003.
    [20]. Tanahasi, H., “Derailment Coefficient and Climbing probability of Wheel Flange,” Quarterly Report of RTRI, vol.14, no.1, pp.29-34, 1973.
    [21]. Takai, H., Uchida, M., Muramatsu, H., Ishida, H., “Derailment Safety Evaluation by Analytic Equations,” Quarterly Report of RTRI, vol.43, no.3, pp.119-124, 2002.
    [22]. Wickens A. H., “The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels,” International Journal of Solids and Structures, vol.1, pp.319-341, 1965.
    [23]. Weinstock, H. (1984), “Wheel Climb Derailment Criteria for Evaluation of Rail Vehicle Safety”, Paper no.84-WA/RT-1, Winter Annual Meeting of the American Society of Mechanical Engineers, November.
    [24]. Yokose, K., Fukumoto, N., Sado, T., “Fundamental Consideration of Geometrical Contact between Wheel and Rail” 日本機械學會論文集C編, Vol. 56, No. 528, pp. 136-143, 1990. (日文)
    [25]. Yoshihiro, SUDA, “Study of Safety Factor against Derailment for Rail Vehicles”,日本機械學會論文集C編, Vol. 57, No. 542, pp. 3164-3167, 1991. (日文)
    [26]. Yang, Y., “Limit Cycle Hunting of a Bogie with Flanged Wheels,” Vehicle Systems Dynamics, vol24, pp.185-196, 1995.
    [27]. Zboinski K., “Dynamical investigation of railway vehicles on curved track,” Eur. J. Mech. A/Solids, 17, pp.1001-1020, 1998.
    [28]. 俞展猷, 李富達, 李谷, “車輛脫軌及其評價,” 鐵道學報, 第21卷, 第3期, 1999.
    [29]. 陳炫綜, “車輪與鐵軌間非線性接觸力對鐵路車輛轉向架穩定性之影響”,國立成功大學機械工程學系碩士論文, 2000.
    [30]. 曾京, “Steady-State Derailment Criteria of a Railway Wheelset,” 鐵道學報, 第21卷, 第6期, 1999.
    [31]. 張定賢, 機車車輛軌道系統動力學, 中國鐵道出版社, 1996.
    [32]. 張衛華, 薛弼一, 吳學杰, 胡柳嘉, “單輪對脫軌試驗及其理論分析,” 鐵道學報, 第20卷, 第1期, 1998.
    [33]. 張家豪, “鐵路車輛轉向架系統於彎曲軌道運動之脫軌行為與穩定性分析”,國立成功大學機械工程學系碩士論文, 2002.
    [34]. 張世福, “非線性接觸力對行駛於彎曲軌道車輛系統之動態穩定性效應”,國立成功大學機械工程學系碩士論文, 2001.
    [35]. 翟婉明, 陳果, “根據車輪抬升量評判車輛脫軌的方法與準則,” 鐵道學報,第23卷, 第2期, 2001.
    [36]. 翟婉明, 車輛軌道耦合動力學, 中國鐵道出版社, 2001.
    [37]. 鄭永長, “非線性車輪與鐵軌接觸力對鐵路車輛輪軸組穩定性之影響”,國立成功大學機械工程學系碩士論文, 1999.
    [38]. 鄭國雄, 張恩, 軌道工程, 大中國圖書股份有限公司, 2002.
    [39]. 嚴雋耄, 車輛工程, 中國鐵道出版社, 1999.

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE