簡易檢索 / 詳目顯示

研究生: 戴艾珍
Tai, Ai-Chen
論文名稱: 高韌性泡沫纖維混凝土
High ductility fiber reinforced foamed concrete
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 108
中文關鍵詞: 高韌性纖維混凝土(ECC)飛灰水淬高爐石泡沫混凝土綠色輕質混凝土
外文關鍵詞: Engineered cementitious composite, Fly ash, Blast-furnace slag powder, Foam concrete, Green lightweight concrete
相關次數: 點閱:88下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泡沫混泥土屬於輕質混凝土之一種,其力學強度較低,具較高的脆性性質,一般泡沫混凝土於28天抗壓強度僅為1至10 MPa間,多用於空隙填充以及絕緣用途。ECC (Engineered Cementitious Composites)為一種高性能的纖維混凝土,透過細粒料與卜作嵐材料的組成以及PVA纖維的添加,使ECC具較高的力學強度,以及具有獨特的擬應變硬化行為與多重開裂現象。
    本研究透過在兩種高礦物摻料(飛灰以及高爐石粉)含量的ECC配比中,嘗試添加利用機械式所預製的泡沫使其輕量化,能同時兼具ECC以及泡沫混凝土的特性,嘗試發展出高韌性的泡沫纖維混凝土,稱之「綠色輕質ECC」。本研究中透過壓力試驗、單軸拉力試驗、吸水性試驗、乾縮試驗、熱傳導係數的量測,探討材料組成的變化、設計單位重的變化以及纖維含量的變化對相關性質的影響。
    透過光學顯微鏡,觀察其試體斷面泡沫與纖維的分布狀況,嘗試解釋對於相關性質的影響。另一方面,透過估算組成材料的碳排放量,以及其力學效益,以顯示混凝土的環保性質。
    實驗結果顯示,設計單位重所對應的泡沫含量,對於各項性質的影響較為顯著;隨著泡沫含量的增加,力學強度、吸水性、乾縮量以及熱傳導係數均隨之下降。而纖維的添加,使材料具較高的抗拉強度,但因纖維較易影響漿體的流動性,使得部分性質受到漿體流動性下降的影響,孔洞發生相連以及試體易出現明顯的缺陷,可能使力學強度下降、吸水性提升、乾縮量提升等。

    Among all types of concrete, foamed concrete is a type of lightweight concrete that is brittle and presents low mechanical strength. On the other hand, ECC (Engineered cementitious composite) is a special type of high performance cementitious concrete reinforced with concrete which exhibits high ductility and tensile strength hardening. In order to improve the performance of foamed concrete and decrease the weight of ECC, this study aims to develop a fiber reinforced foamed concrete with high ductility. Foam is added into ECC mixture which has a high percentage of fly ash or slag.
    The durability, mechanical and some functional properties of the two mixtures design were studied, which has the designed density of 1500 kg/m3 and 1700 kg/m3, and different PVA fiber volume fraction from 0 to 2 %.
    The compressive and tensile strength of specimens which used slag are better than the specimens that used fly ash. Meanwhile, the results showed that the compressive and tensile strength decreases with decreasing density, but these mechanical properties were still better than regular foamed concrete.
    The specimens with higher volume of foam, namely lower density, have lower water absorption, lower drying shrinkage and lower thermal conductivity.

    摘要 I 誌謝 VII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 3 2.1 高韌性纖維混凝土 3 2.2 泡沫混凝土 8 2.2.1 輕質混凝土 8 2.2.2 組成材料 9 2.2.3 泡沫製作方式 12 2.2.4 泡沫混凝土的應用 13 2.2.5 高強度泡沫混凝土 14 2.2.6 輕質ECC 19 第三章 實驗規劃 24 3.1 實驗材料 25 3.2 試體製作與養護流程 31 3.2.1 拌合程序 31 3.2.2 試拌 33 3.2.3 配比設計 33 3.2.4 試體規劃 35 3.2.5 壓力試體 36 3.2.6 拉力試體 36 3.2.7 吸水性試體 37 3.2.8 乾縮試體 37 3.2.9 熱傳導試體 38 3.3 試驗內容與方法 39 3.3.1 圓柱壓力試驗 39 3.3.2 單軸拉力試驗 40 3.3.3 吸水性試驗 41 3.3.4 乾縮試驗 41 3.3.5 熱傳導係數試驗 42 3.3.6 試體切面觀察 43 第四章 試驗結果與討論 45 4.1 硬固單位重 45 4.2 圓柱壓力試驗 47 4.2.1 不同設計單位重 53 4.2.2 不同纖維含量 54 4.3 單軸拉力試驗 58 4.3.1 不同設計單位重 62 4.3.2 不同纖維含量 62 4.4 吸水性試驗 70 4.4.1 不同設計單位重 71 4.4.2 不同纖維含量 72 4.5 乾縮試驗 75 4.5.1 不同設計單位重 76 4.5.2 不同纖維含量 77 4.6 熱傳導係數試驗 79 4.6.1 不同材料組成 82 4.6.2 不同設計單位重 83 4.6.3 不同纖維含量 83 4.7 試體切面觀察 84 4.8 運用與環保效益 88 第五章 結論與建議 91 5.1 結論 91 5.2 建議 94 參考文獻 95 附錄A 七天齡期抗拉結果之應力應變曲線 101 附錄B 拉力試體照片 103 附錄C F配比斷面放大圖 107 附錄D 實驗參數對各項性質之影響 108

    [1] 林憲德,2003,「熱濕氣後的綠色建築」,詹氏書局,台北.
    [2] 蘇彥方(2014),綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒合能力之研究,國立中央大學土木工程研究所碩士論文
    [3] 洪暄惠(2016),高爐石高韌性纖維混凝土(ECC)之開發與自癒合研究,國立中央大學土木工程研究所碩士論文
    [4] 洪崇展,戴艾珍,顏誠皜,溫國威,張庭維(2017),新世代多功能性混凝土材料-高性能纖維混凝土,土木水利.第44卷第1期,頁33-51。
    [5] ACI Committee. (1996). Guide for Precast Cellular Concrete Floor, Roof, and Wall Units (ACI 523.2R-96).
    [6] ACI Committee. (2003). Guide for Structural Lightweight-Aggregate Concrete. American Concrete Institute (ACI 213R-03).
    [7] ASTM. (2012). Standard Test Method for Foaming Agents for Use in Producing Cellular Concrete Using Preformed Foam (ASTM C796M-12).
    [8] ASTM. (2012). Standard Test Method for Compressive Strength of Lightweight Insulating Concrete (ASTM C495M-12).
    [9] ACI Committee. (2014). Guide for Cellular Concrete above 50 lb/ft3(800 kg/m3)
    [10] Awang, H., Aljoumaily, Z. S., Noordin, N., & Al-Mulali, M. Z. (2014). The Mechanical Properties of Foamed Concrete containing Un-processed Blast Furnace Slag. In MATEC Web of Conferences (Vol. 15, p. 01034). EDP Sciences.
    [11] Amran, Y. M., Farzadnia, N., & Ali, A. A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990-1005.
    [12] ASTM. (2017). Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete (ASTM C490M-17).
    [13] ASTM. (2017). Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement (ASTM C596-09).
    [14] ASTM. (2017). Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus (ASTM C518-17).
    [15] Bouvard, D., Chaix, J. M., Dendievel, R., Fazekas, A., Létang, J. M., Peix, G., & Quenard, D. (2007). Characterization and simulation of microstructure and properties of EPS lightweight concrete. Cement and Concrete Research, 37(12), 1666-1673.
    [16] Demirboğa, R. (2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 42(7), 2467-2471
    [17] Fujiwara, H., Sawada, E., & Ishikawa, Y. (1995). Manufacture of High-Strength Aerated Concrete Containing Silica Fume. Special Publication, 153, 779-794.
    [18] Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 107(6).
    [19] Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.
    [20] Huang, X., Ranade, R., Zhang, Q., Ni, W., & Li, V. C. (2013). Mechanical and thermal properties of green lightweight engineered cementitious composites. Construction and Building Materials, 48, 954-960.
    [21] Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
    [22] Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, 37-48.
    [23] Hung, C. C., Li.S.-H. (2013) Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites. Composites Part B: Engineering. 45, pp.1441-1447.
    [24] Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
    [25] Hilal, A. A. (2015). Properties and microstructure of pre-formed foamed concretes (Doctoral dissertation, University of Nottingham).
    [26] Hilal, A. A., Thom, N. H., & Dawson, A. R. (2015). The use of additives to enhance properties of pre-formed foamed concrete. International Journal of Engineering and Technology, 7(4), 286.
    [27] Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.
    [28] Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
    [29] Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
    [30] Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
    [31] Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
    [32] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    [33] Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
    [34] Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
    [35] Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
    [36] Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
    [37] Jennings, H. M. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and concrete research, 30(1), 101-116.
    [38] Jones, M. R., & McCarthy, A. (2005). Behaviour and assessment of foamed concrete for construction applications. In Use of Foamed Concrete in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5 July 2005 (pp. 61-88). Thomas Telford Publishing.
    [39] Jones, M. R., & McCarthy, A. (2005). Preliminary views on the potential of foamed concrete as a structural material. Magazine of concrete research, 57(1), 21-32.
    [40] Kamaya T., Uchida M., Tsutsumi M. and Masumoto F. (1996). Production of Lightweight and Highstrength Foamed Concrete Product, JP patent no. 08-283080.
    [41] Kearsley, E. P., & Wainwright, P. J. (2001). The effect of high fly ash content on the compressive strength of foamed concrete. Cement and concrete research, 31(1), 105-112.
    [42] Kearsley, E. P., & Wainwright, P. J. (2002). Ash content for optimum strength of foamed concrete. Cement and concrete research, 32(2), 241-246.
    [43] Kosmatka, S. H., Panarese, W. C., & Kerkhoff, B. (2002). Design and control of concrete mixtures (Vol. 5420, pp. 60077-1083). Skokie, IL: Portland Cement Association.
    [44] Li, V. C., Wang, S., & Wu, C. (2001). Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Materials Journal-American Concrete Institute, 98(6), 483-492.
    [45] Li, M., & Li, V. C. (2006). Behavior of ecc/concrete layered repair system under drying shrinkage conditions/das verhalten eines geschichteten instandsetzungssystems aus ecc und beton unter der einwirkung von trocknungsschwinden. Restoration of Buildings and Monuments, 12(2), 143-160.
    [46] Mackie, G. K. (1985). Recent uses of structural lightweight concrete. Concrete Constr, 30(6), 497-502.
    [47] Neville,A.M.(1981).Properties of Concrete. 3rd Edition,Pitman Publishing Limited.
    [48] Neville, A. M. (1995). Properties of concrete (Vol. 4). London: Longman.
    [49] Newman, J., & Choo, B. S. (Eds.). (2003). Advanced concrete technology 3: processes. Butterworth-Heinemann.
    [50] Nambiar, E. K., & Ramamurthy, K. (2006). Influence of filler type on the properties of foam concrete. Cement and Concrete Composites, 28(5), 475-480.
    [51] Orchard, D. F., Curran, A., & Hearne, R. (1979). CONCRETE TECHNOLOGY-VOLUME 1-PROPERTIES OF MATERIALS (No. Monograph).
    [52] Tonyan, T. D., & Gibson, L. J. (1992). Structure and mechanics of cement foams. Journal of Materials Science, 27(23), 6371-6378.
    [53] V.C. Li, T. Kanda, Engineered cementitious composites for structural applications, Journal of Materials in Civil Engineering, 10 (1998) 66-69.
    [54] Wang, S., & Li, V. C. (2003). 27 LIGHTWEIGHT ENGINEERED CEMENTITIOUS COMPOSITES (ECC). In PRO 30: 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 4) (Vol. 1, p. 379). RILEM Publications.
    [55] Yang, K. H., Lee, K. H., Song, J. K., & Gong, M. H. (2014). Properties and sustainability of alkali-activated slag foamed concrete. Journal of Cleaner Production, 68, 226-233.
    [56] Zhu, Y., Yang, Y., & Yao, Y. (2012). Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Construction and Building Materials, 36, 1076-1081.

    無法下載圖示 校內:2023-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE