| 研究生: |
陳昭男 Chao-Nan, Chen |
|---|---|
| 論文名稱: |
災害時空序列之特徵解析與估測 Character Analysis and Estimation of Spatial-Temporal Calamity Series |
| 指導教授: |
簡錦樹
Jean, Jiin-Shuh 李宗仰 Lee, Tzong-Yeang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 灰色理論 、R/S估測法 、雙向分解法 、自組織臨界 、混沌 、複雜性 、災害系統 、長期記憶性 、碎形 |
| 外文關鍵詞: | long term memory, calamity system, chaos, self-organization critical, gray theory, R/S forecast method, complexity, two-way decomposition analytical method, fractal |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於複雜為災害的基本特徵,因而採用複雜性科學方法為目前常見解析災害系統的工具之ㄧ。本研究以複雜科學為出發點,著重於災害時、空序列之特性探討及估測方法建立與應用,其中有六個主題為文中所欲探究者,分別為:(1)模擬與真實災害序列之長期記憶性解析;(2) 短序列估測模式建立與災害時間序列之應用;(3) 災害發生時間之複雜性與自組織臨界探討;(4) 以空間複雜性探究地震發生之空間分布自組織與複雜性;(5) 複雜地形之非均向性參數與地質特性相關解析與分區;(6) 時空序列之雙向分解法建立及其應用。
在模擬與真實災害序列之長期記憶性解析方面:對模擬與自然序列進行Hurst指數分析,說明災害序列具長期記憶效應。且門檻值越高或災害越大者,其記憶特性越不明顯。又於模擬與實際地震災變資料之研究,發現Hurst指數於建模或預測前可提供相關前置訊息以得至較確切的結果。於災害發生時間之複雜性與自組織臨界探討方面:經複雜性參數之計算與分析,顯示規模越大或越極端之災害時間序列的複雜性較強,所形成的時序資料於時間軸上不均勻分布。而在異常事件發生前,產生自組織臨界特性,具有高度變異勢能與高複雜。只要有一小的變動或偶發事件,隨之產生大規模崩解效應或連鎖反應,即遽變產生。在以空間複雜性探究地震發生之空間分布自組織與複雜性方面:地震空間複雜性參數均以二維平面歷程加以計算,其結果傾向低維度,顯然台灣地震發生之空間分佈受到構造之影響甚鉅,此一特性時間序列分析結果相同。透過聚類分析,可發現自組織臨界蘊含有勢能差異之特性,可區分高、低勢能不同之地震,並可驗證複雜系統之脆性組織過程。又複雜地形之非均向性參數與地質特性相關解析方面:由研究中參數之計算結果,顯示台灣地形系統似乎並不如想像中複雜,且此些參數分佈具六個不同方向的異向特性,每個方向似有其相擬合的地形與地質意義。渾沌吸子之分群顯示最少之解釋變數,亦合乎地形系統構成要素。以台灣地區構造線、岩性以及山脈分佈線等線形之分佈為東北─西南向,吸子為2;而70°至130°的剖面,反映出台灣受板塊運動之應力所推擠的方向,並垂直線形方向,吸子為4,此可視為渾沌動力學分區並與估測結果比對。在短序列估測模式建立與災害時間序列之應用方面:應用灰色預報過程於模擬災害序列,並推導R/S估測法,又為增加其估測效能,因而又導入灰色理論推得灰色結合R/S估測法。發現災害序列均顯示灰色結合R/S估測法較R/S估測或灰色預報為佳。此外,於時空序列之雙向分解法建立及其應用:所推演之雙向分解法對自組織與渾沌動力學分區的災害估測具相當的成效與適用性,且於選擇估測模式上可有較大彈性,若資料具多變量型態時可進行雙向修正。
由上結果可得知,災害序列之複雜特性分析可說明序列本身具記憶性與自組織特性。記憶性與自組織特性有利於估測過程,經模擬與自然災害序列估測均驗證灰色結合R/S估測法與雙向分解法的估測效能。
It is the essential feature of the calamity to be complicated. Adopting the scientific method of complexity is one of the tools of common analysis for calamity system at present. Therefore, regarding complex science as the starting point and focusing on the characteristic discussion, model establishment and application of the spatial-temporal calamity series in this studying six topics are concerned and described as follows: (1) long term memories of simulation and true calamity series are analytic, (2) discussion of time takes place in the calamity by complexity and self-organization critical, (3) exploration of self-organized and complex distribution of earthquake by space complexity, (4) relational analysis and regionalization of anisotropic properties of complex parameters and geologic significance, (5) estimative modeling of shirt series and its application of calamity time series, (6) combination model establishment and its application of space-time series.
The study of long term memories of simulation and true calamity series, the Hurst exponent value of simulation and true calamity series are analyzed. The results show that the calamity series hold a strong long-term memory effect. The less obvious of the memory characteristic when the higher threshold value of series or the greater calamity are calculated. Furthermore, according to the case study of both simulated and real earthquakes, more accurate results could be acquired if Hurst exponent can provide relative leading information before the modeling and forecasting. On the discussion of time takes place in the calamity by complexity and self-organization critical, the complexity parematers are calculated and analyzed. It shows that the series of larger scale or grater calamity hold a strong complex feature. The higher threshold value represents the more extreme calamity, and the distribution of series is not uniform in time axis. Before the extraordinary events, it appeared self-organization critical with high variant entropy and complexity. The abrupt variation occurred when small change or sudden event, and a large scale avalanche or a chain reaction will follow. On the exploration of self-organized and complex distribution of earthquake by space complexity, the 2-D complex parameters of earthquake in space are calculated. The lower dimension represents that the tectonic influence in space distribution of earthquake of Taiwan is very great. The result is the same as time series analysis. According to clustering analysis, the self-organization critical represents the feature of different entropy of earthquake, and it will be use to separate earthquake. It shows that the variant complexity represent the change of entropy. The higher entropy and complexity occur in extremely critical events and demonstrate the brittle process of complex system. On the relational analysis of anisotropic properties of complex parameters and geologic significance, the results show that the topographic system does not reveal a high complexity. Different anisotropic characters in complexity parameters are observed along 6 different directions, and it seems that causing by a specific geologic process and/or geomorphologic process. The grouping of chaotic attractor represents the variance required for the interpretation of the elements of topographic system. From the geologic point of view, the linear distribution in structure, lithology and mountain ranges is the direction of NE-SW, and the attractor is 2. The sectors between 70° and 130° have an interpreting variance of 4, the highest value in Taiwan area, reflects the complexity caused by the tectonic movements. On estimative modeling of short series and its application of calamity time series, using gray theory and forecasting simulated calamity series. The R/S forecast method is developed, furthermore, it combining with gray theory to increase the potency of forecasting. The combination of gray theory and R/S method shows an even higher adaptability than R/S and gray method in the forecasting of simulated and natural calamity series. Furthermore, on the two-way decomposition analytical method establishment and application of disaster series, the results show that the effectiveness and suitability are proved by the forecasting of space-time series from the two-way decomposition process, and there is more flexible in choosing model for forecasting. It can be revised two-way when data are the type of multivariable.
Concluding, the calamity series hold long-term memory and self-organization critically that analyze by complex analyses and contribute the results to data forecasting. According to the forecasting, modeling and natural data, the results show that the effectiveness and suitability are proved from the combination of gray theory and R/S method and the the two-way decomposition process.
1. 方立人 (1998),「年週期、半年週期和聖嬰現象」,國立中央大學大氣物理研究所碩士論文,桃園。
2. 王錦華 (2001),地震預測的基礎:地震物理學,「第四屆海峽兩岸地震科技研討會暨台灣地區強地動觀測研討會論文集(四)」,台灣,第159-160頁。
3. 王鑫 (1991),「地形學」,聯經出版事業公司,台北。
4. 林柏勳 (1995),「金融預警系統之動態模式-以綜合證券商為實證」,東海大學應用統計學研究所書碩士論文,台中。
5. 林淑真 (1999),「碎形與渾沌在非線性水文系統之解析與預報」,國立成功大學水利及海洋工程研究所博士論文,台南。
6. 林鴻溢、李映雪 (1992),「分形論-奇異性探索」,北京理工大學出版社,北京,第262-285頁。
7. 朱令人、陳禺 (2000),「地震分形」,地震出版社,北京。
8. 何春蓀 (1982),「台灣地體構造的演變」,經濟部中央地調所,台北。
9. 李錫堤 (1997),「地形影像3D套合軟體Topoviewer使用手冊」,康訊科技股份有限公司,台北。
10. 余貴坤、黃瑞德、何美儀、許麗文 (1998),台灣地區大地震的前震和餘震特徵研究(三)—苗栗-台中及台東地區,於:「交通部中央氣象局地震測報中心技術報告」,21,第183-199頁。
11. 吳漢雄、鄧聚龍、溫坤裡 (1996),「灰色分析入門」,高立圖書有限公司,台北。
12. 胡毓彬 (1997),「多變量時間序列的降維問題」,國立清華大學統計學研究所 博士論文,新竹。
13. 昝大偉 (1992),「台灣地形之碎形幾何特性及其代表之地形意義」,國立成功大學地球科學研究所碩士論文,台南。
14. 孫明璽 (1998),「現代預測學」,浙江教育出版社,杭州。
15. 夏愛玲、羅哲賢 (1997),近500年旱澇等級序列分維特徵的初步分析,於:「中國西北乾旱氣候研究」,孫國武主編,氣象出版社,北京,第3-6頁。
16. 陳昭男,李宗仰 (2004),時空序列之雙向分解法建立及其應用,台灣水利,出刊中。
17. 陳彥傑 (2004),「台灣山脈的構造地形指標特性—以面積高度積分、地形碎形參數與河流坡降指標為依據」,國立成功大學地球科學所博士論文,台南。
18. 陳朝福 (2003),「組織轉型研究—新科學典範的創造性演化觀點」,國立臺灣大學商學研究所博士論文,台北。
19. 曹軍、胡萬義 (1993),「灰色系統理論與方法」,東北林業大學出版社,哈爾濱。
20. 許國志 (2000),「系統科學與工程研究」,上海科技教育出版社,上海。
21. 張徽正、林啟文、陳勉銘、盧詩丁 (1998),台灣五十條活動斷層說明書,中央地質調查所。
22. 趙培文 (1995),「台灣地形之碎形幾何特性及其代表之地形意義」,國立成功大學地球科學研究所碩士論文,台南。
23. 廖一夫 (2001),「臺灣銀行業動態化預警模型之研究」,國立成功大學政治經濟研究所碩士論文,台南。
24. 鄧聚龍 (1999),「灰色系統理論與應用」,高立圖書有限公司,台北。
25. 劉思峰、郭天榜、黨耀國 (1999),「灰色系統理論及其應用」,科學出版社,北京。
26. 劉進金、袁文中、鄭文哲、吳啟男、黃明哲 (1983),台灣地區空中側視雷達探測地質調查計劃,於:「礦業研究所第196號報告」,工業技術研究院,新竹。
27. 羅蘭格 (2001),地震前兆綜合資訊場動態演化及其地震的關係,「第四屆海峽兩岸地震科技研討會暨台灣地區強地動觀測研討會論文集(四)」,台灣,第124-126頁。
28. Ahnert, F. (1996). Introduction to Geomorphology, Arnold, London.
29. Aki, K. (1989). Ideal Probabilistic Earthquake Prediction, Tectonophysics, 169, 197-198.
30. Allain, C. and M. Cloitre (1991). Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature, 297, 47-49.
31. Amir, G. B. and M. Farach (1996). Let Sleeping Files Lie: Pattern Matching in Z-Compressed Files, Journal of Computer and System Sciences, 52(2), 299-307.
32. Andrade R. F. S., H. J. Schellnhuber and M. Claussen (1998). Analysis of Rainfall Records: Possible Relation to Self-organized Criticality, Physica A-Statistical Mechanics and its Applications, 254(3-4), 557-568.
33. Angelier, J., E. Barrier, and H. T. Chu (1986). Paleostress Trajectories Related to Plate Collision in the Foothills Fold-thrust Belt of Taiwan, Tectonophysics, 125(1-3), 161-178.
34. Aviles, C. A., C. H. Scholz and J. Boatwright (1987). Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault, Journal of Geophysical Research, 92(B1), 331- 344.
35. Baas, A. C. W. (2002). Chaos, Fractals and Self-organization in Coastal Geo-morphology: Simulating Dune Landscapes in Vegetated Environments, Geomorphology, 48, 309-328.
36. Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality, Springer-Verlag, New York.
37. Bak, P., C. Tang and K. Wiesenfeld (1987). Self-organized Criticality: An Explanition of 1/f Noise, Physical Review Letters, 59, 381-384.
38. Bak, P., C. Tang and K. Wiesenfeld (1988). Self-organized Critical Phenomena, In: Directions in Chaos, Volume 2, Edited by Hao Bai-Lin, World Scientific, Singapore, 238-256.
39. Bak, P. and C. Tang (1989), Earthquakes as a Self-Organized Critical Phenomena, Journal of Geophysical Research, 94(B11), 15635-15638.
40. Bak, P. and K. Chen (1991). Self-organized Criticality, Scientific American, 264(1), January, 26-33.
41. Batchelor R. and P. Dua (1995). Forecaster Diversity and the Benefits of Combining Forecasts, Management Science, 41, 68–75.
42. Bate, A. K. (1990). Climate in Crisis: The Greenhouse Effect and What We Can Do, The Book Publishing Company, USA.
43. Bates, J. M. and C. W. J. Granger (1969). The Combination of Forecasts, Operational Research Quarterly, 20, 451-468.
44. Beer, T. (1991). Comment on “On the Fractal Interpretation of the Mainstream Length-drainage Area Relationship” by A. Robert and A. G. Roy, Water Resources Research, 27(9), 2487-2488.
45. Beer, T. and M. Borgas (1993). Horton’s Laws and the Fractal Nature of Streams, Water Resources Research, 29(5), 1475-1487.
46. Bhattacharya, D. (1996a). Rescaled Range Characteristics of Annual Hydrologic Series, Technical Reports CE-EHE-96-3(c), Environment And Hydrology Engineering, Purdue University, West Lafayette. Ind.
47. Bhattacharya, D. (1996b). Rescaled Range Characteristics of Monthly Hydrologic Series-I, Technical Reports CE-EHE-96-3(a), Environment And Hydrology Engineering, Purdue University, West Lafayette. Ind.
48. Bhattacharya, D. (1996c). Rescaled Range Characteristics of Monthly Hydrologic Series-II, Technical Reports CE-EHE-96-3(b), Environment And Hydrology Engineering, Purdue University, West Lafayette. Ind.
49. Bhattacharya, D. and A. R. Rao (1997). Memory in Hydrologic Time Series, Technical Reports CE-EHE-97-2, School of Civil Engineering, Purdue University, West Lafayette. Ind.
50. Biq, C. C. (1972). Dual-trench Structure in the Taiwan-Luzon Region, Proceedings of the Geological Society of China, 15, 65-75.
51. Box, G. E. P. and G. M. Jenkins (1976). Time Series Analysis: Forecasting and Control, Revised Edition, Holden-Day, San Francisco.
52. Briggs, J. and F. D. Peat (1989). Turbulent Mirror: An Illustrated Guide to Chaos Theory and the Science of Wholeness, Harper & Row, Publishers, New York.
53. Burridge R. and I. Knopoff (1967). Model and Theoretical Seismicity, Bulletin of the Seismological Society of America, 57(3), 341-371.
54. Burrough, P. A. (1981). Fractal Dimensions of Landscapes and Other Environmental Data, Nature, 294(19), 240-242.
55. Çambel, A. B. (1993). Applied Chaos Theory: A Paradigm for Complexity, Academic Press, Inc., Boston.
56. Carlson, J. M. and L. S. Langer (1989). Properties of Earthquakes Generated by Fault Dynamics, Physical Review Letters, 62, 2632-2635.
57. Carlson, J. M., J. S. Langer and B. E. Shaw (1994). Dynamics of Earthquake Faults, Reviews of Modern Physics, 66(2), 657-70.
58. Carr, J. R. (1995). Numerical Analysis for the Geological Sciences, Prentice Hall, Englewood Cliffs, New York.
59. Casti, J. L. (1994). Complexification: Explaining a Paradoxical World through the Science of Surprises, HarperPerennial, New York.
60. Chakraborty K., K. Mehrotra, C. Mohan and S. Ranka (1992). Forecasting the Behavior of Multivariate Time Series Using Neural Networks, Neural Networks, 5(6), 961–970.
61. Cimino, G., G. Del Duce, L. K. Kadonaga, G. Rotundo, A. Sisani, G. Stabile, B. Tirozzi, M. Whiticar (1999). Time Series Analysis of Geological Data, Chemical Geology Including Isotope Geoscience, 161, 253-270.
62. Crownover, R. M. (1995). Introduction to Fractals and Chaos, Jones and Bartlett Publishers, Boston.
63. Crutchfield, J. P. and B. S. McNamara (1987). Equations of Motions from a Data Series, Complex Systems, 1, 417-452.
64. Cruz, G. M. (1978). A Statistical Approach to the Combination of Forecasts, Unpublished M.S. Thesis, School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia.
65. Cuomo, V., V. Lapenna, M. Macchiato, C. Serio and L. Telesca (1998). Linear and Nonlinear Dynamics in Electrical Precursory Time Series: Implications for Earthquake Prediction, Tectonophysics, 287(1-4), 279-298.
66. Czirok A., E. Somfai and T. Vicsek (1997). Fractal Scaling and Power-law Landslide Distribution in a Micromodel of Geomorphological Evolution, Geologische Rundschau, 86(3), 525-530.
67. De Rubeis, V., P. Dimitriu, E. Papadimitriou and P. Tosi (1993). Recurrent Patterns in the Spatial Behaviour of the Italian Seismicity Revealed by the Fractal Approach. Geophysical Research Letters, 20, 1911–1914.
68. De Rubeis, V., P. Tosi and S. Vinciguerra (1997). Time Clustering Properties of Seismicity in the Etna Region between 1874 and 1913. Geophysical Research Letters, 24, 2331–2334.
69. Deng, J. L. (1982). The Control Problems of Grey System, System and Control Letters, 5, 288-294.
70. Deng, J. (1989). Introduction to Grey System Theory. The Journal of Grey System , (1), 1-24.
71. Descherevsky, A.V., A. A. Lukk and A. Ya. Sidorin (2000). Evidences of Self-organization in Geophysical Fields Temporal Variations, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 25(12), 775-779.
72. Dubuc, B., J. F. Quinioy, C. Roques-Carmes, C. Tricot and S. W. Zucker (1989). Evaluating the Fractal Dimension of Profiles, Physical Review A, 39(3), 1500-1512.
73. Enescu B. and K. Ito (2001). Some Premonitory Phenomena of the 1995 Hyogo-ken Nanbu Earthquake: Seismicity, b-value and Fractal Dimension, Tectonophysics, 338(3-4), 297-314.
74. Evison, F. F. (2001). Long-range Synoptic Earthquake Forecasting: An Aim for the Millennium, Tectonophysics, 338(3-4), 207-215.
75. Evison, F. F. and D. A. Rhoades (1998). Long-term Seismogenic Process for Major Earthquakes in Subduction Zones, Physics of the Earth and Planetary Interiors, 108(3), 185-199.
76. Falconer, K. (1990). Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester.
77. Fan, L. T., D. Neogi and M. Yashima (1991). Elementary Introduction to Spatial and Temporal Fractals, Springer-Verlag, Berlin.
78. Farmer, J. D. (1982a). Chaotic Attractors of an Infinite-dimensional Dynamical System, Physica D, 4, 366-393.
79. Farmer, J. D. (1982b). Information Dimension and the Probabilistic Structure of Chaos, Zeitschrift für Naturforschung, 37a, 1304-1325.
80. Feder, J. (1988). Fractals, Plenum Press, New York.
81. Feigenbaum, M. J. (1978). Quantitative Universality for a Class of Nonlinear Transformations, Journal of Statistical Physics, 19(1), 25-52.
82. Feigenbaum, M. J. (1979). The Universal Metric Properties of Nonlinear Transformations, Journal of Statistical Physics, 21(6), 669-706.
83. Feng S. and L. Xu (1996). A Hybrid Knowledge-based System for Urban Development, Expert Systems with Applications, 10, 157–163.
84. Geilikman, M. B., T. V. Golubeva and V. F. Pisarenko (1990). Multifractal Patterns of Seismicity, Earth and Planetary Science Letters, 99, 127-132.
85. Ghilardi, P. and R. Rosso (1990). Comment on "Chaos in Rainfall" by I. Rodriguez-Iturbe et al., Water Resources Research, 26(8), 1837-1839.
86. Gleick, J. (1988). Chaos: Making a New Science, Penguin Books, New York.
87. Goltz, C. (1996). Multifractal and Entropic Properties of Landslides in Japan, Geologische Rundschau, 85, 71-84.
88. Goltz, C. (1998). Fractal and Chaotic Properties of Earthquakes, Lecture Notes in Earth Sciences, 77, Springer-Verlag, Berlin.
89. Gomez B., M. Page, P. Bak and N. Trustrum (2002). Self-organized Criticality in Layered, Lacustrine Sediments Formed by Landsliding, Geology, 30(6), 519-522.
90. Gouyet, J. F. (1996). Physics and Fractal Structures, Springer-Verlag, Berlin.
91. Granger, C. W. J., and T. Terasvirta (1992). Experiments in Modeling Nonlinear Relationships between Time Series. In M. Casdagli and S. Eubank (Eds.), Nonlinear Modeling and Forecasting, Addison-Wesley, California.
92. Grassberger, P. and I. Procaccia (1983a). Characterization of Strange Attractors, Physical Review Letters, 50(5), 346-349.
93. Grassberger, P. and I. Procaccia (1983b). Estimation of the Kolmogorov Entropy from a Chaotic Signal, Physical Review A, 28, 2591-2593.
94. Grassberger, P. and I. Procaccia (1983c). Measuring the Strangeness of Strange Attractors, Physical D, 9, 189-208.
95. Grassberger, P. and I. Procaccia (1984). Dimensions and Entropies of Strange Attractors from Fluctuating Dynamics Approach, Physica D, 13, 34-54.
96. Gutenberg, B. and C. F. Richter (1954). Seismicity of the Earth and Associated Phenomenon, Princeton Univ. Press, Princeton.
97. Hassan, F. A. (1998). Climatic Change, Nile Floods and Civilization, Nature and Resources, 34(2), 34-40.
98. Hastings, H. M. and G. Sugihara (1993). Fractals: A User's Guide for the Natural Sciences, Oxford University Press, Inc., New York.
99. Hayles, N. K. (1991). Chaos and Order: Complex Dynamics in Literature and Science, University of Chicago Press, Chicago.
100. Henon, M. (1976). A Two-Dimensional Mapping with a Strange Attractor, Commun. Math. Phys., 50, 69-77.
101. Hertz, J., A. Krough and R. G. Palmer (1991). Introduction to the Theory of Neural Computation, Addison-Wesley, California.
102. Hirata, T., T. Satoh and K. Ito (1987). Fractal Structure of Spatial Distribution of Microfracturing in Rock, Geophysical Journal of the Royal Astronomical Society, 90, 369-374.
103. Hirata, T. and M. Imoto (1991). Multifractal Analysis of Spatial Distribution of Microearthquakes in the Kanto Region, Geophysical Journal International, 107, 155-162.
104. Hsu, K. L., H. V. Gupta, and S. Sorooshian (1995). Artificial Neural Network Modeling of the Rainfall-runoff Process, Water Resource Research, 31, 2517-2530.
105. Huang, J. and D. L. Turcotte (1988). Fractal Distributions of Stress and Strength and Variations of b-value, Earth and Planetary Science Letters, 91,223-230.
106. Hughes, D. and M. Paczuski (2002). Large Scale Structures, Symmetry, and Universality in Sandpiles, Physical Review Letters, 88(5), 054302-1–054302-4.
107. Hunt J. (1999). Environmental Forecasting and Turbulence Modeling, Physica D, 133(1-4), 270-295.
108. Hurst, H. E. (1951). The Long-Term Storage Capacity of Reservoirs, Transactions of the American Society of Civil Engineers, 116, 770-808.
109. Hurst, H. E., R. P. Black and Y. M. Simaika (1965). Long-Term Storage, An Experiment Study, Constable, London.
110. Jackson M. C. (1995). Beyond the Fads: Systems Thinking for Managers, Systems Research, 12, 25–42.
111. Kadanoff L. P., S. R. Nagel, L. Wu and S. M. Zhou (1989) Scaling and Universality in Avalanches, Physical Review A, 39(12), 6524-6537.
112. Kang B. H. (1986). Unstable Weights in the Combination of Forecasts, Management Science, 32, 683–695.
113. Karunanithi, N., W. J. Grenney, D. Whitley and K. Bovee (1994). Neural Networks for River Flow Prediction, Journal of Computing in Civil Engineering, 8(2), 201-220.
114. Kaspar, F. and H. G. Schuster (1987). Easily Calculable Measure for the Complexity of Spatiotemporal Patterns, Physical Review A, 36(2), 842-848.
115. Kauffman, S. A. (1984). Emergent Properties in Random Complex Automata, Physica D, 10, 146-156.
116. Kauffman, S. A. (1991). Antichaos and Adaptation, Scientific American, August, 78-84.
117. Kauffman, S. A. (1993). Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, New York.
118. Kieffer, J. C. and E. H. Yang (1996). Sequential Codes, Lossless Compression of Individual Sequences, and Kolmgorov Complexity, IEEE Transactions on Information Theory, IT-42(1), 29-39.
119. Kiyashchenko, D., N. Smirnova, V. Troyan and F. Vallianatos (2003). Dynamics of Multifractal and Correlation Characteristics of the Spatio-temporal Distribution of Regional Seismicity before the Strong Earthquakes, Natural Hazards and Earth System Sciences, 3(3/4), 285-298.
120. Kiyashchenko, D., N. Smirnova, V. Troyan, E. Saenger and F. Vallianatos (2004). Seismic Hazard Precursory Evolution: Fractal and Multifractal Aspects, Physics and Chemistry of the Earth, Parts A/B/C, 29(4-9), 367-378.
121. Klemes, V. (1974). The Hurst Phenomena: a Puzzle?, Water Resources Research, 10(4), 675-688.
122. Klinkenberg, B. (1992). Fractals and Morphometric Measures: is there a Relationship?, Geomorphology, 5, 5-20.
123. Korvin, G. (1992). Fractal Models in the Earth Sciences, Elsevier Science Publishers B.V., Amsterdam, 144-170.
124. Kubota, T. (1994). A study of Fractal Dimension of Landslide, the Feasibility for Susceptibility Index, Journal of Japan Landslide Society, 31(3), 9-15.
125. La Barbera, P. and R. Rosso (1989). On the fractal dimension of stream networks, Water Resources Research, 25(4), 735-741.
126. La Barbera, P. and R. Rosso (1990). Reply to comment on “On the Fractal Dimension of Stream Networks” by P. La Barbera and R. Rosso, Water Resources Research, 26(9), 2245-2248.
127. Lapenna, V., M. Macchiato, S. Piscitelli and L. Telesca (2000). Scale-invariance Properties in Seismicity of Southern Apennine Chain (Italy), Pure and Applied Geophysics, 157, 589-601.
128. Lapenna, V., G. Martinelli and L. Telesca (2004). Long-range Correlation Analysis of Earthquake-related Geochemical Variations Recorded in Central Italy, Chaos, Solitons and Fractals, 21(2), 491-500.
129. LeBaron, B. (1992). Nonlinear Forecasts for the S and P Stock iIdex. In M. Casdagli & S. Eubank (Eds.), Nonlinear Modeling and Forecasting, Addison-Wesley, California.
130. Lempel, A. and J. Ziv (1976). On the Complexity of Finite Sequences, IEEE Transcations on Information Theory, IT-22(1), 75-81.
131. Li, T.-Y. and Yorke, J. (1975). Period Three Implies Chaos, American Mathematics Monthly, 82, 985-992.
132. Lin, Y.-D., F.-C. Chong, S.-M. Sung, T.-S. Huo and C.-H. Liu (1998). The Calculation of Complexity in Normal and Apoplectic EEG Singals, Journal of the Chinese Institute of Engineers, 21(5), 585-594.
133. Lisboa, P. G. J. (1992). Neural Network—Current Applications, Chapman and Hall, London.
134. Lorenz, E. N. (1963). Deterministic Nonperiodic Flow, Journal of Atmosphere Sciences, 20, 130-141.
135. Lorenz, E. N. (1993). The Essence of Chaos, The University of Washington Press, Seattle.
136. Lu, C. Y. and J. Malavieille, (1994). Oblique Convergence, Indentation and Rotation Tectonics in the Taiwan Mountain Belt: Insights from Experimental Modeling, Earth and Planetary Science Letters, 121, 477-494.
137. Lu, C. Y., J. Angelier, H. T. Chu and J. C. Lee (1995). Contractional, Transcurrent, Rotational and Extensional Tectonics: Examples from Northern Taiwan, Tectonophysics, 246, 129-146.
138. Lu, C. Y. and K. J. Hsu (1992). Tectonic Evolution of the Taiwan Mountain Belt, Petroleum Geology of Taiwan, 29, 21-46.
139. Luongo G., A. Mazzarella and A. Palumbo (1996). On the Self-organized Critical State of Vesuvio Volcano, Journal of Volcanology and Geothermal Resarch, 70(1-2), 67-73.
140. Lye, L. M. and Y. Lin (1994). Long-term Dependence in Annual Peak Flows of Canadian Rivers, Journal of Hydrology, 160, 89-103.
141. Mainzer, K. (1994). Thinfing in Complexity: The Complex Dynamics of Matter, Mind, and Mankind, Springer-Verlag, Berlin.
142. Mandelbrot, B. B. (1967). How Long is the Coast of Britain? Statistical Self-similarity and Fractal Dimension, Science, 155, 636-638.
143. Mandelbrot, B. B. (1975). Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of Coastlines and the Number-Area Rule for Islands, Proceedings of the National Academy of Sciences USA, 72, 3825-3828.
144. Mandelbrot, B. B. (1983). The Fractal Geometry of Nature, W. H. Freeman and Company, New York.
145. Mandelbrot, B. B. and J. R. Wallis (1969). Some Long Run Properties of Geophysical Records, Water Resources Research, 5, 321-340.
146. Mandic, D. P. and J. A. Chambers (2001). Recurrent Neural Networks for Prediction, John Wiley & Sons Ltd., Chichester.
147. May, R. (1974). Biological Populations with Nonoverlapping Generations, Stable Points, Stable Cycles, and Chaos, Science, 186, 645-647.
148. McLeod, A. I. and K. W. Hipel (1978). Preservation of the Rescaled Adjusted Range, 1. A Reassessment of the Hurst Phenomena, Water Resources Research, 14(3), 491-508.
149. Mazzarella, A. (1998). The Time Clustering of Floodings in Venice and the Cantor Dust Method, Theoretical and Applied Climatology, 59, 147-150.
150. Mazzarella, A. and F. Rapetti (2004). Scale-invariance Laws in the Recurrence Interval of Extreme Floods: An Application to the Upper Po River Valley (Northern Italy), Journal of Hydrology, 288(3-4), 264-271.
151. McGuire W. J. and C. R. J. Kilburn (1997). Forecasting Volcanic Events: Some Contemporary Issues, Geologische Rundschau, 86(2), 439-445.
152. McNamara, B. and K. Wiesenfeld (1990). Self-organized Criticality in Vector Avalanche Automata, Physical Review A, 41, 1867-1873.
153. Mikulecky, D. (1999). Definition of Complexity, from http://views.vcu.edu/~mikuleck/ and http://views.vcu.edu/~mikuleck/ON%20COMPLEXITY.html.
154. Montgomery, D. R. and W. E. Dietrich (1992). Channel Initiation and the Problem of Landscape Scale, Science, 255, 826-830.
155. Nakanishi, H. (1991). Statistical Properties of the Cellular-Automaton Model for Earthquakes, Physical Review A, 43(12), 6613-6621.
156. Newbold, P., and C. W. J. Granger (1974). Experience with Forecasting Univariate Time Series and the Combination of Forecasts, Journal of the Royal Statistical Society, ser. A, 137, 131-146.
157. Nikora, V. I. (1994). On Self-similarity and Self-affinity of Drainage Basins, Water Resources Research, 30(1), 133-137.
158. Nikora, V. I. And V. B. Sapozhnikov (1993). River Network Fractal Geometry and its Computer Simulation, Water Resources Research, 29(10), 3569-3575.
159. Oseledec, V. I. (1968). A Multiplicative Ergodic Theorm. Lyapunov Characteristic Number for Dynamical Systems, Transactions of the Moscow Mathematical Society, 19, 197-231.
160. Otsuka, M. (1972). A Chain-reaction Type Source Model as a Tool to Interpret the Magnitude Frequency Relation of Earthquakes, Journal of Physics of the Earth, 20, 35-45.
161. Ouchi, T. and T. Uekawa (1986). Statistical Analysis of the Spatial Distribution of Earthquakes — Variation of the Spatial Distribution of Earthquakes before and after Large Earthquakes, Physics of the Earth and Planetary Interiors, 44,211-225.
162. Packard, N. H. (1990). A Genetic Algorithm for the Analysis of Complex Data, Complex Systems, 4, 543-572.
163. Packard, N. H., J. P. Crutchfield, J. D. Farmer and R. S. Shaw (1980). Geometry from a Time Series, Physical Review Letters, 45(9), 712-715.
164. Pandey G., S. Lovejoy and D. Schertzer (1998). Multifractal Analysis of Daily River Flows Including Extremes for Basins of Five to Two Million Square Kilometres, One Day to 75 Years, Journal of Hydrology, 208(1-2), 62-81.
165. Park D. C., M. A. El-Sharkawi and R. J. Marks (1991). Electric Load Forecasting Using an Artificial Neural Network, IEEE Transaction Power Systems, 6(2), 442–449.
166. Peitgen, H.-O., H. Jurgens and D. Saupe (1992). Chaos and Fractals: New Frontiers of Science, Springer-Verlag, Inc., New York.
167. Peters, E. E. (1991). Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility, John Wiley & Sons, Inc., New York.
168. Peters, E. E. (1994). Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, John Wiley & Sons Ltd, Chichester.
169. Peters, E. E. (1996). Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility, Second Edition, John Wiley & Sons, Inc., New York.
170. Peuquet, D. J. (1988). Representations of Geographic Space: Toward a Conceptual Synthesis, Annals of the Association of American Geographers, 78, 441-461.
171. Peuquet, D. J. (1994). It´s about Time: A Conceptual Framework for the Representation of Temporal Dynamics in GIS, Annals of the Association of American Geographers, 84, 441-461.
172. Phillips, J. D. (1994). Deterministic Uncertainty in Landscape, Earth Surface Processes and Landforms, 19, 389-401.
173. Phillips, J. (1995). Nonlinear Dynamics and the Evolution of Relief, Geomorphology, 14(1), 57-64.
174. Phillips, J. D., P. A. Gares and M. C. Slattery (1999). Agricultural Soil Redistribution and Landscape Complexity, Landscape Ecology, 14, 197-211.
175. Plotnick, R. E., R. H. Gardner and R. V. O’Neill (1993). Lacunarity Indices as Measures of Landscape Texture, Landscape Ecology, 8, 201.
176. Porporato, A. and L. Ridolfi (1997). Nonlinear Analysis of River Flow Time Sequences, Water Resources Research, 33(6), 1353-1367.
177. Potter, K. W. (1976). Evidence of Nonstationarity as a Physical Explanation of the Hurst Phenomena, Water Resources Research, 12(5), 1047-1052.
178. Prigogine, I. and I. Stengers (1984). Order Out of Chaos: Man's New Dialogue with Nature, Flamingo, London.
179. Qin, S. Q., J. Jiu, S. J. Wang and L. Hui (2001). A Nonlinear Catastrophe Model of Instability of Planar-slip Slope and Chaotic Dynamical Mechanisms of its Evolutionary Process, International Journal of Solids and Structures, 38(44-45), 8093-8109.
180. Radziejewski, M. and Z. W. Kundzewicz (1997). Fractal Analysis of Flow of the River Warta, Journal of Hydrology, 200, 280-294.
181. Rodriguez-Iturbe, I., B. F. De Power, M. B. Sharifi and K. P. Georgakakos (1989). Chaos in Rainfall, Water Resources Research, 25(7), 1667-1675.
182. Rouai, M. and E. B. Jaaidi (2003). Scaling Properties of Landslides in the Rif Mountains of Morocco, Engineering Geology, 68(3-4), 353-359.
183. Ruelle, D. and F. Takens (1971). On the Nature of Turbulence, Communications in Mathematical Physics, 20, 167-172.
184. Rundle, J. B. and D. D. Jackson (1977). A Viscoelastic Relaxation Model for Postseismic Deformation from the San Francisco Earthquake of 1906, Pure and Applied Geophysics, 115, 401-412.
185. Rundle, J. B., D. L. Turcotte and W. Kelin (1996). Reduction and Predictability of Natural Disasters, Proceedings of the Santa Fe Institute Studies in the Sciences of Complexity, U.S., 5-9 January 1994, Addison-Wesley, Canada.
186. Rundle, J. B. and S. R. Brown (1991). Origin of Rate Dependence in Frictional Sliding, Journal of Statistical Physics, 65, 403-412.
187. Rundle, J., W. Klein, D. L. Turcotte and B. D. Malamud (2000). Precursory Seismic Activation and Critical-point Phenomena, Pure and Applied Geophysics, 157(11-12), 2165-2182.
188. Scheidegger, A. E. (1998). Tectonic Predesign of Mass Movements, with Examples from the Chinese Himalaya, Geomorphology, 26(1-3), 37-46.
189. Schumm, S. A. (1991). Problems of Explanation and Extrapolation, To Interpret the Earth- Ten Ways to be Wrong, Cambridge University Press, London.
190. Senatorski, P. (1997). Interactive Dynamics of Faults, Tectonophysics, 277(1-3), 199-207.
191. Seno, T. (1977). The Instantaneous Rotation Vector of the Philippine Sea Plate Relative to the Eurasian Plate, Tectonophysics, 42, 209-226.
192. Shi, S. and B. Liu (1993). Nonlinear Combination of Forecasts with Neural Networks, Proceedings of International Joint Conference on Neural Networks ’93 (IJCNN’ 93), Nagoya, Japan, 959–962.
193. Smalley, R. F., J. L. Chatelain, D. L. Turcotte and R. Prevot (1987). A Fractal Approach to the Clustering of Earthquakes: Applications to the Seismicity of the New Hebrides, Seis. Soc. Am. Bull., 77, 1368-1381.
194. Sornette D., L. Knopoff, Y. Y. Kagan and C. Vanneste (1996). Rank-ordering Statistics of Extreme Events: Application to the Distribution of Large Earthquakes, Journal of Geophysical Research, 101(B6), 13883-13894.
195. Suppe, J. (1981). Mechanics of Mountain Building and Metamorphism in Taiwan, Memoir of Geological Society, 4, 67-89.
196. Suppe, J. (1984). Kinematics of Arc-continent Collision, Flipping of Subduction, and Back-arc Spreading near Taiwan, Memoirs of the Geological Society of China, 6, 21-34.
197. Suzuki, T. (1990). A Perspective on Substantialismic Geomorphology, Trans- actions of Japanese Geomorphological Union, 11(3), 217-232.
198. Takens, F. (1981). Detecting Strange Attractors in Turbulence, In: Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, No. 898, Edited by D. A. Rand and L.-S. Young, Springer-Verlag, Berlin, 366-381.
199. Tang Z., C. Almeida and P. A. Fishwick (1991). Time Series Forecasting Using Neural Networks vs Box-Jenkins Methodology, Simulation, 57(5), 303–310.
200. Tarboton, D. G., R. L. Bras and I. R. Rodriguez-Iturbe (1990). Comment on “On the Fractal Dimension of Stream Networks” by P. L. Barbera and R. Rosso, Water Resources Research, 26(9), 2243-2244.
201. Telesca L., V. Cuomo, V. Lapenna and M. Macchiato (2001). Identifying Space-time Clustering Properties of the 1983–1997 Irpinia-Basilicata (Southern Italy) Seismicity, Tectonophysics, 330, 93-102.
202. Telesca, L., V. Lapenna and M. Macchiato (2002). Monofractal and Multifractal Approaches in Investigating Scaling Properties in Temporal Patterns of the 1983–2000 Seismicity in the Western Corinth Graben, Greece, Physics of the Earth and Planetary Interiors, 131, 63-79.
203. Telesca, L., V. Lapenna and M. Macchiato (2004). Investigating Linear and Nonlinear Behaviours in Time Dynamics of Observational Seismic Sequences, Chaos, Solitons and Fractals, 20(2), 195-203.
204. Teng, L. S. (1992). Geotectonic Evolution of Tertiary Continental Margin Basins of Taiwan, Petroleum Geology of Taiwan, 11(3), 217-232.
205. Theiler, J. (1990). Estimating Fractal Dimension, Journal of the Optical Society of America, 7A, 1055-1073.
206. Theodossiou, P. S. (1993). Predicting Shifts in the Mean of a Multivariate Time Series Process: an Application in Predicting Business Failures, The Journal of American Statistical Association, 88(422), 441-449.
207. Thiesing, F. M., and O. Vornberger (1997). Sales Forecasting Using Neural Networks, Proceedings of 1997 International Conference on Neural Networks (ICNN ’97), Houston, 2125–2128.
208. Tosi, P. (1998). Seismogenic Structure Behavior Revealed by Spatial Clustering of Seismicity in Umbria–Marche Region (Central Italy), Annali di Geofisica, 41, 215–224.
209. Trifu, C-I. (1990). Detailed Configuration of Intermediate Seismicity in Vrancea Region, Revista di Geofisica, 46, 33-40.
210. Tsonis, A. A. (1992). Chaos: From Theory to Applications, Plenum Press, New York.
211. Turcotte, D. L. (1989). A Fractal Approach to Probabilistic Seismic Hazard Assessment, Tectonophysics, 167, 171-177.
212. Turcotte, D. L. (1997). Fractals and Chaos in Geology and Geophyscis, Second Edition, Cambridge University Press, Camdridge.
213. Turcotte, D .L. (1997). Fractal Tectonics and Erosion, Fractals, 1(3), 491-504.
214. Turcotte, D. L. (1999). Applications of Statistical Mechanics to Natural Hazards and Landforms, Physica A, 274(1-2), 294-299.
215. Turcotte, D. L. (1999). Seismicity and Self-organized Criticality, Physics of the Earth and Planetary Interiors, 111,275-293.
216. Ukhorskiy A. Y., M. I. Sitnov, A. S. Sharma and K. Papadopoulos (2003). Combining Global and Multi-scale Features in a Description of the Solar Wind-magnetosphere Coupling, Annales Geophysicae, 21(9), 1913-1929.
217. Uritsky, V. and V. Troyan (1998). Estimation of Changes in Fractal Geometry of Distributed Seismicity during Periods of Major Earthquakes, Problems of Geophysics, Is. 35, 39–42.
218. Uritsky, V. M., M. I. Pudovkin and A. Steen (2001). Geomagnetic Substorms as Perturbed Self-organized Critical Dynamics of the Magnetosphere, Journal of Atmospheric and Solar-Terrestrial Physics, 63, 1415-1424.
219. Voss, R. F. (1988). Fractals in Nature: From Characterization to Simulation (Chapter 1), In: The Science of Fractal Images, Edited by M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H.-O. Peitgen, D. Saupe and R. F. Voss, Springer-Verlag, Heidelberg, 21-70.
220. Waldrop, M. M. (1992). Complexity: The Emerging Science at the Edge of Order and Chaos, Penguin Books Ltd., London.
221. Wang, J. H. (1988). b Values of Shallow Earthquakes in Taiwan, Bulletin of the Seismological Society of America, 78, 1243-1254.
222. Wang, J. H., C. C. Liu, K. C. Chen and Y. S. Cheng (1985). The Taiwan Telemetered Seismographic Network (in Chinese), Proc. Seminar Commem. 50th Anniv. for the Hsinchu-Taichung Earthquake of 1935, 124-136.
223. Wang, J. H. and C. W. Lee (1997). Multifractal Measures of Time Series of Earthquakes, Journal of Physics of the Earth, 45, 331-345.
224. Wang, J. H. and H. Y. Shen (1999). Multifractal Measures of Epicentral Distribution of M≧6 Earthquakes in the North-south Seismic Belt of China, Journal of the Geological Society of China, 42(4), 631-637.
225. Wang, J. H. and W. H. Lin (1993). A Fractal Analysis of Earthquakes in West Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 4, 457-462.
226. Wang, Y. Y., C. D. Jan, X. Q. Chen and W. L. Han (2003). Self-organization Criticality of Debris Flow Rheology, Chinese Science Bulletin, 48(17), 1857-1861.
227. Wang, J. H. and C. W. Lee (1996). Multifractal Measures of Earthquakes in West Taiwan, PAGEOPH, 146, 131-145.
228. Wei, W. S. (1994). Time Series Analysis: Univariate and Multivariate Methods, Addison-Wesley, 2nd edition, California.
229. Wei, Q., H. Z. Jin, J. Guo and M. Ji (2002). Analysis on the Collapse of Complex System Based on the Brittle Characteristic, In: 2002 International Symposium on Nonlinear Theory and Its Applications, China, October 2002.
230. Wen, R. and R. Sinding-Larsen (1997). Uncertainty in Fractal Dimension Estimated from Power Spectra and Variograms, Mathematical Geology, 29(6), 727-753.
231. Wiener, N. (1945). Cybernetics or Control and Communication in the Animal and the Machine, MIT Press,
232. Wolf, A. (1986). Quantifying Chaos with Lyapunov Exponents, in Chaos, Princeton University Press, Princeton.
233. Wolfram, S. (1984). Cellular Automaton Models as Models of Complexity, Nature, 311, 419-424.
234. Wyss, M. and S. Wiemer (1994). Seismic Quiescence before the Landers (M=7.5) and Big Bear (M=6.5) 1992 Earthquakes, Bulletin of the Seismological Society of America, 84, 900-916.
235. Xu, T., I. D. Moore and J. C. Gallant (1993). Fractals, Fractal Dimension and Landscape Artview, Geomorphology, 8, 245-262.
236. Xu, J. H., Z. R. Liu and R. Liu (1994). The Measures of Sequence Complexity for EEG Studies, Chaos Solitons Fractals, 4(11), 2111-2119.
237. Yip, D. H. F., E. L. Hines and W. H. Yu (1997). Application of Artificial Neural Networks in Sales Forecasting, Proceedings of 1997 International Conference on Neural Networks (ICNN ’97), Houston, pp. 2121–2124.
238. Yokoi Y., J. R. Carr and R. J. Watters (1996). Fractal Character of Landslides, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(3), 106A.
239. Yu, P. S., S. C. Lin and S. J. Chen (2001). Application of Grey Model toward Runoff Forecasting, Journal of the American Water Resources Association, 37(1), 151-166.
240. Zhou, Y. K., Z. Y. Ma and L. C. Wang (2002). Chaotic Dynamics of the Flood Series in the Huaihe River Basin for the Last 500 Years, Journal of Hydrology, 258(1-4), 100-110.
241. Zurada, J. M. (1992). Introduction to Artificial Neural Systems, West Publishing, Minnesota.