簡易檢索 / 詳目顯示

研究生: 賴建志
Lai, Jian-Jhih
論文名稱: 不同海拔盤古蝌蚪暴衝游泳的表現差異和溫度馴化的能力
Variations of Burst Swimming Performance and the Thermal Acclimation Capacity of Larval Bufo bankorensis from Different Altitudes
指導教授: 侯平君
Hou, Ping-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 37
中文關鍵詞: 溫度海拔兩棲類幼體最大加速率最大速率
外文關鍵詞: Amax, elevation, D200, temperature, Umax, larval anuran
相關次數: 點閱:101下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   外溫動物的運動表現容易受到環境溫度改變的影響,而且也受到天擇直接的篩選。因此在不同溫度環境下的族群的運動表現可能存在著變異。從過去的研究發現兩棲動物運動表現是否能被溫度馴化改變可能和環境溫度變動的程度有關。盤古蟾蜍廣泛分布在台灣全島山區,因為不同海拔的族群在生殖季節和溫度環境的差異,其蝌蚪在暴衝游泳的表現和被溫度馴化影響的情形可能有所差異。本研究檢測(1)是否盤古蝌蚪的暴衝游泳表現會受到馴化溫度的影響,並且探討此溫度馴化反應和環境溫度的關聯;(2)是否不同海拔的盤古蝌蚪的暴衝游泳表現存在著差異。我收集在高海拔(2300 m) 和低海拔(300 m) 的盤古蝌蚪。每個海拔的盤古蝌蚪帶回實驗室後分成兩群,分別馴養在15℃ 和22℃。馴養約一個月後,測試盤古蝌蚪在12、17、22、27、32℃ 下的游泳表現,每個溫度共取得三個表現參數:最大速率(Umax)、最大加速率(Amax) 和前兩百毫秒的移動距離(D200)。結果發現:高海拔盤古蝌蚪經過22℃ 馴化後,在27℃ 和32℃ 的Umax 顯著比15℃ 馴化的蝌蚪快,但是低海拔盤古蝌蚪各游泳參數均不受馴化溫度的影響。Umax 的Q10 值在22℃ 馴化的高海拔蝌蚪高於同海拔低溫馴化的蝌蚪。Amax 和D200 在各個測試溫度下皆不受馴化溫度的影響。在12-27℃ 高海拔盤古蝌蚪的Umax 普遍高於低海拔的盤古蝌蚪,而Amax 和D200 則在17 和22℃ 兩個海拔間有差異。高海拔冬夏季蝌蚪的Umax 在12-22℃ 有差異,但不同季節的蝌蚪的Amax 和D200 則沒有差異。這些結果支持了兩棲動物運動表現的溫度馴化反應和環境變動的程度有關的假設,也支持了在冷環境的動物在低溫下的表現比暖環境的動物好的假設。

     Locomotor performances of ectothermic vertebrates are highly sensitive to environmental temperature and are subjected to direct selection. Therefore, these traits may display large variations amongst populations. Thermal acclimation ability of locomotor performance may be related to the extent of temperature fluctuations in the habitats. The Taiwanese toad, Bufo bankorensis, distribute over a wide altitudinal range from lowland to elevation above 3000 m. Because of the large variations in altitudinal temperature and breeding seasons, altitudinal larvae of B. bankorensis may differ in burst swimming performance and the thermal acclimation ability. This study investigated (1) whether the burst swimming of larval B. bankorensis is affected by thermal acclimation and how is this ability related to its habitat temperature; (2) whether the altitudinal populations of larval B. bankorensis differ in burst swimming. Larval B. bankorensis were collected from lowland (300 m) and highland (2300 m) and acclimated at 15 or 22℃ for about one month. Burst swimming performance was measured to obtain maximum velocity (Umax), acceleration (Amax), and distance moved within the initial 200 ms (D200). The length-adjusted Umax of highland larvae acclimated at 22℃ were significantly higher than those acclimated at 15℃ testing at 27 and 32℃. However, the adjusted Umax of lowland larvae did not differ between acclimation temperatures. The adjusted Amax and D200 were not affected by thermal acclimation at most test temperatures. Q10 for Umax in the warm acclimated highland larvae were significantly higher than those in the cool acclimated larvae. However, this effect did not occur in the lowland larvae. The adjusted Umax averaged over all acclimation groups was different between altitudinal populations at 12-27℃. The adjusted Amax and D200 averaged over all acclimation groups differed significantly between altitudinal populations at 17 and 22℃. The highland larvae collected in different seasons were significantly different in the adjusted Umax (averaged over all acclimation groups) at 12-22℃. The adjusted Amax and D200 were not significantly affected by season at all test temperatures for the highland larvae. These results support the hypotheses that (1) the thermal acclimation ability of an animal is associated with the extent of temperature variations in its environment and (2) animals from cool climates would perform better at lower temperature than those from warm climates.

    TABLE OF CONTENTS                                       Page CHINESE ABSTRACT..............................................................I ENGLISH ABSTRACT............................................................ II ACKNOWLEDGEMENT..............................................................IV TABLE OF CONTENTS.............................................................V LIST OF TABLES..............................................................VII LIST OF FIGURES............................................................VIII APPENDIX.................................................................... 36 Variations of burst swimming performance and the thermal acclimation capacity of larval Bufo bankorensis from different altitudes Introduction..................................................................1  Effects of acute temperature changes........................................1  The locomotor performance function among populations........................1  Thermal acclimation ability of locomotor performance among Amphibians.......2  My hypothesis...............................................................3 Materials and Methods.........................................................5 Animal collection...........................................................5 Animal acclimation and experimental protocol................................5 Measurements of the burst swimming performance..............................6 Determination of burst swimming parameters..................................7 Statistical analyses........................................................8 Results.......................................................................9 Total length and developmental stage of larvae..............................9 The effect ofs repeated measurements........................................9 The effects of acclimation temperatures....................................10 The effects of altitudes...................................................11 The effects of seasons.....................................................12 Discussion.................................................................. 13 The effects of acclimation temperatures....................................13 The effects of altitudes...................................................16 The effects of seasons.....................................................18 Bibliography................................................................ 20 LIST OF TABLES Table Page 1. Total length (cm) and development stage of larval Bufo bankorensis from different altitudes after acclimation at 15℃ or 22℃....................24 2. Differences in burst swimming parameters measured at the beginning and the end of experiments at 22℃...........................................25 3. Results of ANCOVA for effects of altitude, season, and acclimation temperature (AT)on Umax in larval Bufo bankorensis at different temperatures.............................................................26 4. Results of ANCOVA for effects of altitude, season, and acclimation temperature (AT) on Amax in larval Bufo bankorensis at different temperatures.............................................................27 5. Results of ANCOVA for effects of altitude, season, and acclimation temperature (AT) on D200 in larval Bufo bankorensis at different temperatures.............................................................28 6. Results of ANOVA for effects of altitude, season, and acclimation temperature (AT) on Q10 for Umax, Amax, and D200 in larval Bufo bankorensis..............................................................29 7. Q10 value over the test temperature of 12 to 32℃ for Umax, Amax, and D200 in larval Bufo bankorensis..........................................30 LIST OF FIGURES Figure Page 1. Effects of acclimation temperature on Umax, Amax, and D200 in the highland winter Bufo bankorensis larvae..................................32 2. Effects of acclimation temperature on Umax, Amax, and D200 in the highland summer Bufo bankorensis larvae..................................33 3. Effects of acclimation temperature on Umax, Amax, and D200 in the lowland larval Bufo bankorensis..........................................34 4. Altitudinal comparison of Umax, Amax, and D200 in Bufo bankorensis larvae...................................................................35 5. Seasonal variations in Umax, Amax, and D200 in the highland Bufo bankorensis larvae.......................................................36

    Ball, D. and Johnston, I. A. (1996). Molecular mechanisms underlying the
    plasticity of muscle contractile properties with temperature acclimation in
    the marine fish Myoxocephalus scorpius. Journal of Experimental Biology 199,
    1363-1373.
    Bauwens, D., Garland, T., Jr. Castilla, A. M. and Van Damme, R. (1995). Evolution
    of sprint speed in lacertid lizards: morphological, physiological, and
    behavioral covaritation. Evolution 49, 848-863. Beddow, T. A. and Johnston,
    I. A. (1995). Plasticity of muscle contractile properties following
    temperature acclimation in the marine fish Myoxocephalus scorpius. Journal of
    Experimental Biology 198, 193-201.
    Beddow, T. A., Van Leeuwen, J. L. and Johnston, I. A. (1995). Swimming kinematics
    of fast starts are altered by temperature acclimation in the marine fish
    Myoxocephalus scorpius. Journal of Experimental Biology 198, 203-208.
    Bennett, A. F. (1990). Thermal dependence of locomotor capacity. American Journal
    of Physiology 259, 253-258. Cappello, A., La Palombara, P. F. and Leardini,
    A. (1996). Optimization and smoothing techniques in movement analysis.
    International Journal of Bio-Medical Computing 41, 137-151.
    Challis, J. H. (1999). A procedure for the automatic determination of filter
    cutoff frequency for the processing of biomechanical data. Journal of Applied
    Biomechanics 15, 303-317.
    Chang, L. W. (2002). Heat Tolerance and its Plasticity in Larval Bufo bankorensis
    from Different Altitudes. Master Thesis, Department of Biology, National
    Cheng Kung University, Taiwan.
    Christian, K. A. and Tracy, C. R. (1981). The effect of the thermal environment
    on the ability of hatchling Galapagos land iguanas to avoid predation during
    dispersal. Oecologia 49, 218-223.
    Else, P. L. and Bennett, A. F. (1987). The thermal dependence of locomotor
    performance and muscle contractile function in the salamander Ambystoma
    tigrinum nebulosum. Journal of Experimental Biology 127, 219-233.
    Feder, M. E. (1986). Effect of thermal acclimation on locomotor energetics and
    locomotor performance in a lungless salamander, Desmognathus ochrophaeus.
    Journal of Experimental Biology 121, 271-283.
    Gerald, C. F. and Wheatley, P. O. (1994). Applied Numerical Analysis.
    Addison-Wesley Publishing Company, California.
    Hertz, P. E., Huey, R. B. and Nevo, E. (1983). Homage to Santa Anita: thermal
    sensitivity of sprint speed in agamid lizards. Evolution 37, 1075-1084.
    Hoffmann, A. A. (1995). Acclimation: increasing survival at a cost. Trends in
    Ecology and Evolution 10, 1-2.
    Huey, R. B. and Berrigan, D. A. (1996). Testing evolutionary hypotheses of
    acclimation. Cambridge University Press.
    Huey, R. B. and Stevenson, R. D. (1979). Integrating thermal physiology and
    ecology of ectotherms: a discussion of approaches. American Zoologist 19,
    357-366.
    Huey, R. B. e. a. (1999). Testing the adaptive significance of acclimation: a
    strong inference approach. American Zoologist 39, 323-336.
    John-Alder, H. B., Barnhart, M. C. and Bennett, A. F. (1989). Thermal sensitivity
    of swimming performance and muscle contraction in northern and southern
    populations of tree frogs (Hyla crucifer). Journal of Experimental Biology
    42, 357-372.
    John-Alder, H. B., Morin, P. J. and Lawler, S. (1988). Thermal physiology,
    phenology, and distribution of tree frogs. The American Naturalist 132,
    506-520.
    Johnson, T. P. and Bennett, A. F. (1995). The thermal acclimation of burst escape
    performance in fish: an integrated study of molecular and cellular physiology
    and organismal performance. Journal of Experimental Biology 198, 2165-2175.
    Johnson, T. P., Bennett, A. F. and McLister, J. D. (1996). Thermal dependence and
    acclimation of fast start locomotion and its physiological basis in rainbow
    trout (Oncorhynchus mykiss). Physiological Zoology 69, 276-292.
    Johnston, I. A., Cole, N. J., Abercromby, M. and Vieira, V. L. A. (1998).
    Embryonic temperature modulates muscle growth characteristics in larval and
    juvenile herring. The Journal of Experimental Biology 201, 623-646.
    Kingsolver, J. G. and Watt, W. B. (1983). Thermoregulatory strategies in Colias
    butterflies: thermal stress and the limits to adaptation in temporally
    varying environments. The American Naturalist 121, 32-55.
    Knowles, T. W. and Weigl, P. D. (1990). Thermal dependence of anuran burst
    locomotor performance. Copeia 1990, 796-802.
    Leroi, A. M. e. a. (1994). Temperature acclimation and competitive fitness: an
    experimental test of the beneficial acclimation assumption. Proc. Natl. Acad.
    Sci. U. S. A. 91, 1917-1921.
    Londos, P. L. and Brooks, R. J. (1988). Effect of temperature acclimation on
    locomotory performance curves in the toad Bufo woodhousii woodhousii. Copeia
    1988, 26-32.
    Lynch, M. and Gabriel, W. (1987). Environmental tolerance. The American
    Naturalist 129, 283-303.
    Marvin, G. A. (2003a). Aquatic and terrestrial locomotor performance in a
    semiaquatic plethodontid salamander (Pseudotriton ruber): Influence of acute
    temperature, thermal acclimation, and body size. Copeia, 704-713.
    Marvin, G. A. (2003b). Effects of acute temperature and thermal acclimation on
    aquatic and terrestrial locomotor performance of the three-lined salamander,
    Eurycea guttolineata. Journal of Thermal Biology 28, 251-259.
    Navas, C. A. (1996). Metabolic physiology, locomotor performance, and thermal
    niche breadth in neotropical anurans. Physiological Zoology 69, 1481-1501.
    Parichy, D. M. and Kaplan, R. H. (1995). Maternal investment and developmental
    plasticity: functional consequences for locomotor performance of hatchling
    frog larvae. Functional Ecology 9, 606-617.
    Putnam, R. W. and Bennett, A. F. (1981). Thermal dependence of behavioural
    performance of anuran amphibians. Animal Behaviour 29, 502-509.
    Renaud, J. M. and Stevens, E. D. (1983). The extent of long-term temperature
    compensation for jumping distance in the frog, Rana pipiens and the toad,
    Bufo americanus. Canadian Journal of Zoology 61, 1284-1287.
    Rome, L. C. (1983). The effect of long-term exposure to different temperatures on
    the mechanical performance of frog muscle. Physiological Zoology 56, 33-40.
    Sidell, B. D., Johnston, I. A., Moerland, T. S. and Goldspink, G. (1983). The
    eurythermal myofibril protein complex of the mummichog (Fundulus
    heteroclitus): adaptation to a fluctuating thermal environment. Journal of
    Comparative Physiology B-Biochemical Systemic and Environmental Physiology
    153, 167-173.
    Steuhower, D. J. and Farel, P. B. (1984). Development of locomotor behavior in
    the frog. Developmental Psychobiology 17, 217-232.
    Temple, G. K. and Johnston, I. A. (1998). Testing hypotheses concerning the
    phenotypic plasticity of escape performance in fish of the family Cottidae.
    Journal of Experimental Biology 201, 317-331.
    Watkins, T. B. (2000). The effects of acute and developmental temperature on
    burst swimming speed and myofibrillar ATPase activity in tadpoles of the
    pacific tree frog, Hyla regilla. Physiological and Biochemical Zoology 73,
    356-364.
    Whitehead, P. J., Puckridge, J. T., Leigh, C. M. and Seymour, R. S. (1989).
    Effect of temperature on jump performance of the frog Limnodynastes
    tasmaniensis. Physiological Zoology 62, 937-949.
    Wilson, R. S. (2001). Geographic variation in thermal sensitivity of jumping
    performance in the frog Limnodynastes peronii. Journal of Experimental
    Biology 204, 4227-4236.
    Wilson, R. S. and Franklin, C. E. (1999). Thermal acclimation of locomotor
    performance in tadpoles of the frog Limnodynastes peronii. Journal of
    Comparative Physiology B-Biochemical Systemic and Environmental Physiology
    169, 445-451.
    Wilson, R. S. and Franklin, C. E. (2000). Effect of ontogenetic increases in body
    size on burst swimming performance in tadpoles of the striped marsh frog,
    Limnodynastes peronii. Physiological and Biochemical Zoology 73, 142-152.
    Wilson, R. S. and Franklin, C. E. (2000). Inability of adult Limnodynastes
    peronii (Amphibia: Anura) to thermally acclimate locomotor performance.
    Comparative Biochemistry and Physiology a-Molecular and Integrative
    Physiology 127, 21-28.
    Wilson, R. S. and Franklin, C. E. (2002). Testing the beneficial acclimation
    hypothesis. Trends in Ecology & Evolution 17, 66-70.
    Wilson, R. S., James, R. S. and Johnston, I. A. (2000). Thermal acclimation of
    locomotor performance in tadpoles and adults of the aquatic frog Xenopus
    laevis. Journal of Comparative Physiology B-Biochemical Systemic and
    Environmental Physiology 170, 117-124.
    Winter, D. A. (1990). Biomechanics and Motor Control of Human Movement. John
    Wiley & Sons, New York.

    下載圖示 校內:2007-07-19公開
    校外:2007-07-19公開
    QR CODE