| 研究生: |
賴建志 Lai, Jian-Jhih |
|---|---|
| 論文名稱: |
不同海拔盤古蝌蚪暴衝游泳的表現差異和溫度馴化的能力 Variations of Burst Swimming Performance and the Thermal Acclimation Capacity of Larval Bufo bankorensis from Different Altitudes |
| 指導教授: |
侯平君
Hou, Ping-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 溫度 、海拔 、兩棲類幼體 、最大加速率 、最大速率 |
| 外文關鍵詞: | Amax, elevation, D200, temperature, Umax, larval anuran |
| 相關次數: | 點閱:101 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
外溫動物的運動表現容易受到環境溫度改變的影響,而且也受到天擇直接的篩選。因此在不同溫度環境下的族群的運動表現可能存在著變異。從過去的研究發現兩棲動物運動表現是否能被溫度馴化改變可能和環境溫度變動的程度有關。盤古蟾蜍廣泛分布在台灣全島山區,因為不同海拔的族群在生殖季節和溫度環境的差異,其蝌蚪在暴衝游泳的表現和被溫度馴化影響的情形可能有所差異。本研究檢測(1)是否盤古蝌蚪的暴衝游泳表現會受到馴化溫度的影響,並且探討此溫度馴化反應和環境溫度的關聯;(2)是否不同海拔的盤古蝌蚪的暴衝游泳表現存在著差異。我收集在高海拔(2300 m) 和低海拔(300 m) 的盤古蝌蚪。每個海拔的盤古蝌蚪帶回實驗室後分成兩群,分別馴養在15℃ 和22℃。馴養約一個月後,測試盤古蝌蚪在12、17、22、27、32℃ 下的游泳表現,每個溫度共取得三個表現參數:最大速率(Umax)、最大加速率(Amax) 和前兩百毫秒的移動距離(D200)。結果發現:高海拔盤古蝌蚪經過22℃ 馴化後,在27℃ 和32℃ 的Umax 顯著比15℃ 馴化的蝌蚪快,但是低海拔盤古蝌蚪各游泳參數均不受馴化溫度的影響。Umax 的Q10 值在22℃ 馴化的高海拔蝌蚪高於同海拔低溫馴化的蝌蚪。Amax 和D200 在各個測試溫度下皆不受馴化溫度的影響。在12-27℃ 高海拔盤古蝌蚪的Umax 普遍高於低海拔的盤古蝌蚪,而Amax 和D200 則在17 和22℃ 兩個海拔間有差異。高海拔冬夏季蝌蚪的Umax 在12-22℃ 有差異,但不同季節的蝌蚪的Amax 和D200 則沒有差異。這些結果支持了兩棲動物運動表現的溫度馴化反應和環境變動的程度有關的假設,也支持了在冷環境的動物在低溫下的表現比暖環境的動物好的假設。
Locomotor performances of ectothermic vertebrates are highly sensitive to environmental temperature and are subjected to direct selection. Therefore, these traits may display large variations amongst populations. Thermal acclimation ability of locomotor performance may be related to the extent of temperature fluctuations in the habitats. The Taiwanese toad, Bufo bankorensis, distribute over a wide altitudinal range from lowland to elevation above 3000 m. Because of the large variations in altitudinal temperature and breeding seasons, altitudinal larvae of B. bankorensis may differ in burst swimming performance and the thermal acclimation ability. This study investigated (1) whether the burst swimming of larval B. bankorensis is affected by thermal acclimation and how is this ability related to its habitat temperature; (2) whether the altitudinal populations of larval B. bankorensis differ in burst swimming. Larval B. bankorensis were collected from lowland (300 m) and highland (2300 m) and acclimated at 15 or 22℃ for about one month. Burst swimming performance was measured to obtain maximum velocity (Umax), acceleration (Amax), and distance moved within the initial 200 ms (D200). The length-adjusted Umax of highland larvae acclimated at 22℃ were significantly higher than those acclimated at 15℃ testing at 27 and 32℃. However, the adjusted Umax of lowland larvae did not differ between acclimation temperatures. The adjusted Amax and D200 were not affected by thermal acclimation at most test temperatures. Q10 for Umax in the warm acclimated highland larvae were significantly higher than those in the cool acclimated larvae. However, this effect did not occur in the lowland larvae. The adjusted Umax averaged over all acclimation groups was different between altitudinal populations at 12-27℃. The adjusted Amax and D200 averaged over all acclimation groups differed significantly between altitudinal populations at 17 and 22℃. The highland larvae collected in different seasons were significantly different in the adjusted Umax (averaged over all acclimation groups) at 12-22℃. The adjusted Amax and D200 were not significantly affected by season at all test temperatures for the highland larvae. These results support the hypotheses that (1) the thermal acclimation ability of an animal is associated with the extent of temperature variations in its environment and (2) animals from cool climates would perform better at lower temperature than those from warm climates.
Ball, D. and Johnston, I. A. (1996). Molecular mechanisms underlying the
plasticity of muscle contractile properties with temperature acclimation in
the marine fish Myoxocephalus scorpius. Journal of Experimental Biology 199,
1363-1373.
Bauwens, D., Garland, T., Jr. Castilla, A. M. and Van Damme, R. (1995). Evolution
of sprint speed in lacertid lizards: morphological, physiological, and
behavioral covaritation. Evolution 49, 848-863. Beddow, T. A. and Johnston,
I. A. (1995). Plasticity of muscle contractile properties following
temperature acclimation in the marine fish Myoxocephalus scorpius. Journal of
Experimental Biology 198, 193-201.
Beddow, T. A., Van Leeuwen, J. L. and Johnston, I. A. (1995). Swimming kinematics
of fast starts are altered by temperature acclimation in the marine fish
Myoxocephalus scorpius. Journal of Experimental Biology 198, 203-208.
Bennett, A. F. (1990). Thermal dependence of locomotor capacity. American Journal
of Physiology 259, 253-258. Cappello, A., La Palombara, P. F. and Leardini,
A. (1996). Optimization and smoothing techniques in movement analysis.
International Journal of Bio-Medical Computing 41, 137-151.
Challis, J. H. (1999). A procedure for the automatic determination of filter
cutoff frequency for the processing of biomechanical data. Journal of Applied
Biomechanics 15, 303-317.
Chang, L. W. (2002). Heat Tolerance and its Plasticity in Larval Bufo bankorensis
from Different Altitudes. Master Thesis, Department of Biology, National
Cheng Kung University, Taiwan.
Christian, K. A. and Tracy, C. R. (1981). The effect of the thermal environment
on the ability of hatchling Galapagos land iguanas to avoid predation during
dispersal. Oecologia 49, 218-223.
Else, P. L. and Bennett, A. F. (1987). The thermal dependence of locomotor
performance and muscle contractile function in the salamander Ambystoma
tigrinum nebulosum. Journal of Experimental Biology 127, 219-233.
Feder, M. E. (1986). Effect of thermal acclimation on locomotor energetics and
locomotor performance in a lungless salamander, Desmognathus ochrophaeus.
Journal of Experimental Biology 121, 271-283.
Gerald, C. F. and Wheatley, P. O. (1994). Applied Numerical Analysis.
Addison-Wesley Publishing Company, California.
Hertz, P. E., Huey, R. B. and Nevo, E. (1983). Homage to Santa Anita: thermal
sensitivity of sprint speed in agamid lizards. Evolution 37, 1075-1084.
Hoffmann, A. A. (1995). Acclimation: increasing survival at a cost. Trends in
Ecology and Evolution 10, 1-2.
Huey, R. B. and Berrigan, D. A. (1996). Testing evolutionary hypotheses of
acclimation. Cambridge University Press.
Huey, R. B. and Stevenson, R. D. (1979). Integrating thermal physiology and
ecology of ectotherms: a discussion of approaches. American Zoologist 19,
357-366.
Huey, R. B. e. a. (1999). Testing the adaptive significance of acclimation: a
strong inference approach. American Zoologist 39, 323-336.
John-Alder, H. B., Barnhart, M. C. and Bennett, A. F. (1989). Thermal sensitivity
of swimming performance and muscle contraction in northern and southern
populations of tree frogs (Hyla crucifer). Journal of Experimental Biology
42, 357-372.
John-Alder, H. B., Morin, P. J. and Lawler, S. (1988). Thermal physiology,
phenology, and distribution of tree frogs. The American Naturalist 132,
506-520.
Johnson, T. P. and Bennett, A. F. (1995). The thermal acclimation of burst escape
performance in fish: an integrated study of molecular and cellular physiology
and organismal performance. Journal of Experimental Biology 198, 2165-2175.
Johnson, T. P., Bennett, A. F. and McLister, J. D. (1996). Thermal dependence and
acclimation of fast start locomotion and its physiological basis in rainbow
trout (Oncorhynchus mykiss). Physiological Zoology 69, 276-292.
Johnston, I. A., Cole, N. J., Abercromby, M. and Vieira, V. L. A. (1998).
Embryonic temperature modulates muscle growth characteristics in larval and
juvenile herring. The Journal of Experimental Biology 201, 623-646.
Kingsolver, J. G. and Watt, W. B. (1983). Thermoregulatory strategies in Colias
butterflies: thermal stress and the limits to adaptation in temporally
varying environments. The American Naturalist 121, 32-55.
Knowles, T. W. and Weigl, P. D. (1990). Thermal dependence of anuran burst
locomotor performance. Copeia 1990, 796-802.
Leroi, A. M. e. a. (1994). Temperature acclimation and competitive fitness: an
experimental test of the beneficial acclimation assumption. Proc. Natl. Acad.
Sci. U. S. A. 91, 1917-1921.
Londos, P. L. and Brooks, R. J. (1988). Effect of temperature acclimation on
locomotory performance curves in the toad Bufo woodhousii woodhousii. Copeia
1988, 26-32.
Lynch, M. and Gabriel, W. (1987). Environmental tolerance. The American
Naturalist 129, 283-303.
Marvin, G. A. (2003a). Aquatic and terrestrial locomotor performance in a
semiaquatic plethodontid salamander (Pseudotriton ruber): Influence of acute
temperature, thermal acclimation, and body size. Copeia, 704-713.
Marvin, G. A. (2003b). Effects of acute temperature and thermal acclimation on
aquatic and terrestrial locomotor performance of the three-lined salamander,
Eurycea guttolineata. Journal of Thermal Biology 28, 251-259.
Navas, C. A. (1996). Metabolic physiology, locomotor performance, and thermal
niche breadth in neotropical anurans. Physiological Zoology 69, 1481-1501.
Parichy, D. M. and Kaplan, R. H. (1995). Maternal investment and developmental
plasticity: functional consequences for locomotor performance of hatchling
frog larvae. Functional Ecology 9, 606-617.
Putnam, R. W. and Bennett, A. F. (1981). Thermal dependence of behavioural
performance of anuran amphibians. Animal Behaviour 29, 502-509.
Renaud, J. M. and Stevens, E. D. (1983). The extent of long-term temperature
compensation for jumping distance in the frog, Rana pipiens and the toad,
Bufo americanus. Canadian Journal of Zoology 61, 1284-1287.
Rome, L. C. (1983). The effect of long-term exposure to different temperatures on
the mechanical performance of frog muscle. Physiological Zoology 56, 33-40.
Sidell, B. D., Johnston, I. A., Moerland, T. S. and Goldspink, G. (1983). The
eurythermal myofibril protein complex of the mummichog (Fundulus
heteroclitus): adaptation to a fluctuating thermal environment. Journal of
Comparative Physiology B-Biochemical Systemic and Environmental Physiology
153, 167-173.
Steuhower, D. J. and Farel, P. B. (1984). Development of locomotor behavior in
the frog. Developmental Psychobiology 17, 217-232.
Temple, G. K. and Johnston, I. A. (1998). Testing hypotheses concerning the
phenotypic plasticity of escape performance in fish of the family Cottidae.
Journal of Experimental Biology 201, 317-331.
Watkins, T. B. (2000). The effects of acute and developmental temperature on
burst swimming speed and myofibrillar ATPase activity in tadpoles of the
pacific tree frog, Hyla regilla. Physiological and Biochemical Zoology 73,
356-364.
Whitehead, P. J., Puckridge, J. T., Leigh, C. M. and Seymour, R. S. (1989).
Effect of temperature on jump performance of the frog Limnodynastes
tasmaniensis. Physiological Zoology 62, 937-949.
Wilson, R. S. (2001). Geographic variation in thermal sensitivity of jumping
performance in the frog Limnodynastes peronii. Journal of Experimental
Biology 204, 4227-4236.
Wilson, R. S. and Franklin, C. E. (1999). Thermal acclimation of locomotor
performance in tadpoles of the frog Limnodynastes peronii. Journal of
Comparative Physiology B-Biochemical Systemic and Environmental Physiology
169, 445-451.
Wilson, R. S. and Franklin, C. E. (2000). Effect of ontogenetic increases in body
size on burst swimming performance in tadpoles of the striped marsh frog,
Limnodynastes peronii. Physiological and Biochemical Zoology 73, 142-152.
Wilson, R. S. and Franklin, C. E. (2000). Inability of adult Limnodynastes
peronii (Amphibia: Anura) to thermally acclimate locomotor performance.
Comparative Biochemistry and Physiology a-Molecular and Integrative
Physiology 127, 21-28.
Wilson, R. S. and Franklin, C. E. (2002). Testing the beneficial acclimation
hypothesis. Trends in Ecology & Evolution 17, 66-70.
Wilson, R. S., James, R. S. and Johnston, I. A. (2000). Thermal acclimation of
locomotor performance in tadpoles and adults of the aquatic frog Xenopus
laevis. Journal of Comparative Physiology B-Biochemical Systemic and
Environmental Physiology 170, 117-124.
Winter, D. A. (1990). Biomechanics and Motor Control of Human Movement. John
Wiley & Sons, New York.