| 研究生: |
劉醇鴻 Liu, Tzuan-Horng |
|---|---|
| 論文名稱: |
鎢元素對氮化鉻、氮化鈦與碳化鉻鍍膜
的組織結構奈米化和奈米機械性質之影響 Effect of tungsten on the nano-structure and nano-mechanical properties of CrN, TiN and CrC coatings |
| 指導教授: |
蘇演良
Su, Yean-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 磨耗 、摩擦 、機械性質 、多層鍍膜 |
| 外文關鍵詞: | Wear, Multilayered coatings, Mechanical properties, Friction |
| 相關次數: | 點閱:154 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用封閉式非平衡磁控濺鍍系統發展應用於工業的氮化鉻鎢、氮化鈦鎢及碳化鉻鎢奈米多層鍍膜技術。論文中探討鎢元素、微晶大小、表面粗糙度及調變週期對氮化鉻、氮化鈦及碳化鉻鍍膜,奈米結構及奈米機械性質的影響。使用奈米壓痕及奈米磨耗試驗研究奈米多層鍍膜的機械及磨潤性質。利用原子力顯微鏡、掃瞄式電子顯微鏡、穿透式電子顯微鏡及X光繞射儀研究奈米多層膜的微觀結構。最後,利用車削及印刷電路板微鑽削實驗分析氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜的切削性能。
實驗結果顯示,添加3~8 at.%的鎢元素於氮化鉻鍍膜內,對其硬度值有顯著的影響。鎢含量6 at.%的Cr-W0.06-N鍍膜具有最高的硬度值67.2 GPa。但進一步添加鎢含量至16 at.%,硬度反而下降至36 GPa。隨著鎢含量的提升,氮化鈦鎢鍍膜硬度也隨之增加。鎢含量14 at.%的Ti-W0.14-N鍍膜具有最高的硬度值46.3 GPa。添加12~15 at.%的鎢元素於碳化鉻鎢鍍膜內,對其硬度值並無顯著影響。奈米磨耗試驗中,Cr-W0.06-N和Ti-W0.14-N分別為氮化鉻鎢、氮化鈦鎢鍍膜中,具有最佳的耐磨耗性質的鍍膜。而60V2鍍膜為碳化鉻鎢中,具有最低摩擦係數及磨耗深度鍍膜。H/E參數值(材料破壞前的彈性應變)越高,鍍膜的磨耗深度越淺。因此H/E參數較單獨使用硬度值更能準確判斷鍍膜的抗磨耗性。
隨著鎢含量的增加,氮化鉻鎢、氮化鈦鎢的微結構可分為三種類型。第一種具有奈米結晶或非晶態結構且其表面形貌相當細緻,如Cr-W0.03-N和Ti-W0.01-N鍍膜。第二種擁有緻密和纖細的柱狀晶結構而其表面形貌仍為細緻的結晶態。如Cr-W0.06-N, Cr-W0.08-N, Ti-W0.06-N和Ti-W0.14-N鍍膜。第三種為具有粗大柱狀結晶且表面形貌十分粗糙的鍍膜,如Cr-W0.13-N, Cr-W0.16-N, Ti-W0.29-N和Ti-W0.38-N鍍膜。碳化鉻鎢鍍膜則隨著甲烷流量增加,其微結構由緻密柱狀結晶發展成鬆散類非晶型態。而底材偏壓對碳化鉻鎢鍍膜微結構並無顯著影響。40V2,60v2和80V2鍍膜皆為緻密且發展良好的柱狀晶結構
隨著鎢含量的提升,氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜的微晶大小也隨之增大。氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜的表面粗糙度,隨著微晶大小的增大而顯著提升。在奈米磨耗試驗中,表面粗糙度和氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜的磨耗行為有強烈的關連性。隨著表面粗糙度的增加,摩擦係數及磨耗深度亦隨之明顯變大。隨著多層膜調變週期的增加,氮化鉻鎢和氮化鈦鎢鍍膜的微晶大小也隨之明顯變大,而碳化鉻鎢鍍膜則略微增大。
車削及印刷電路板微鑽削實驗中,Cr-W0.06-N, Ti-W0.14-N和60V2鍍膜分別為氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜中具有最佳抗磨耗能力的鍍膜。在印刷電路板實驗鑽孔數為兩萬孔的情況下,60V2是所有奈米多層鍍膜中具有最小刀角磨耗的鍍膜。
This study utilizes the closed-field unbalanced magnetron sputtering system to develop the Cr-W-N, Ti-W-N and Cr-W-C nano-multilayered coatings for industrial applications. Effect of tungsten, crystallite size, surface roughness and modulation period on the nano-structure and nano-mechanical properties of CrN, TiN and CrC coatings was discussed in this dissertation. Mechanical and tribological properties of these nano-multilayered coatings were investigated by the nanoindentation technique and nano-wear test. The microstructure of these nano-multilayered coatings was examined by AFM, SEM, TEM and XRD in terms of crystal structure and crystallite size. Finally, the cutting performance of the Cr-W-N, Ti-W-N and Cr-W-C coated cemented carbide tools was analyzed in the turning and PCB micro-drilling test.
Results of the experiments show that adding 3~8 at.% tungsten into the Cr-N coating influence the hardness significantly. The hardness rises steeply and a maximum of 67.2 GPa is reached approximately 6 at.% W of the Cr-W0.06-N coating. Upon further increasing the tungsten content, the hardness drops rapidly to approximately 36 GPa at 16 at.%. The hardness is increasing with an increase of the tungsten content for the Ti-W-N coatings. The Ti-W0.38-N coatings with 38 at.% tungsten possess the highest hardness of 46.3 GPa. For the Cr-W-C coatings, adding 12~15 at.% tungsten does not influence the hardness significantly. The optimum Cr-W-N and Ti-W-N coatings for sliding against spherical diamond indenter in the nano-wear test are the Cr-W0.06-N and Ti-W0.14-N coatings. For the Cr-W-C coatings, the 60V2 coating obtains the lowest wear depth and friction coefficient among all Cr-W-C coatings. The wear depth decreases with an increase of the H/E factor (elastic strain to failure) in the nano-wear test. The H/E factor is a more suitable parameter for predicting wear resistance than is hardness alone.
With increasing the tungsten content, the microstructure of Cr-W-N and Ti-W-N coatings can be divided into three types. The first type, Cr-W0.03-N and Ti-W0.01-N coatings, is nanocrystalline/amorphous and the surface topography is featureless and very smooth. The second type has the slender columnar grain structure and surface topology changes into crystalline, and can be found in the Cr-W0.06-N, Cr-W0.08-N, Ti-W0.06-N and Ti-W0.14-N coatings. Moreover, the third type is coarse columnar and the surface topology is rough crystalline structure and we can found in the Cr-W0.13-N, Cr-W0.16-N, Ti-W0.29-N and Ti-W0.38-N coatings. An obvious evolution from dense columnar to loose amorphous-like microstructure in the Cr-W-C coatings is observed with increasing the flow rate of methane gas from 2 to 6 sccm at 35V. There is no significant evolution of the microstructure with an increase in the substrate bias. The 40V2, 60V2 and 80V2 coatings show dense and well-developed columnar structures.
The crystallite sizes of the Cr-W-N, Ti-W-N and Cr-W-C coatings are increasing with increase of the tungsten concentration. The surface roughness of the Cr-W-N, Ti-W-N and Cr-W-C coatings is obviously increased with increase of the crystallite size. The surface roughness and the wear behavior of the Cr-W-N, Ti-W-N and Cr-W-C coatings in the nano-wear test have strong correlation. The higher the surface roughness of the coatings is, the greater the coefficient of friction and wear depths of the coatings are. An obvious increase in crystallite size is observed in the case of the Cr-W-N and Ti-W-N coatings as the modulation period is increased, whereas only minor change in the crystallite size is observed in the case of the Cr-W-C coatings.
The Cr-W0.06-N, Ti-W0.14-N and 60V2 coatings have the best wear resistance for Cr-W-N, Ti-W-N and Cr-W-C coatings in the turning and PCB micro-drilling test, respectively. By drilling the same number of 20,000 holes, the 60V2 coated micron-drill has the smallest corner wear among all nano-multilayered coatings in PCB micro-drilling test.
[1] H. Gleiter, “Nanocrystalline materials”, Prog. Mater. Sci. 33 (1989) 223.
[2] Y.K. Huang, A.A. Menovsky, F.R. de Boer, “Electrical resistivity of nanocrystalline copper“, Nanostruct. Mater. 2 (1993) 505.
[3] R.W. Siegel, “Nanostructured Materials-Mind over mater”, Nanostruct. Mater. 4 (1994) 121.
[4] H. Gleiter, “Nanostructured materials: state of the art and perspectives”, Nanostruct Mater. 6 (1995) 3.
[5] H. Gleiter, “Nanostructured materials: basic concepts and microstructure”, Acta Mater. 48 (2000) 1.
[6] D.S. Rickerby and A. Matthews, Advanced Surface Coatings: a handbook of surface engineering, Glasgow, Blackie, (1991).
[7] R. Behrisch Ed., Sputtering by Particle Bombardment, Applied Physics, 47, Berlin, Springer, (1981).
[8] P.D. Toensend, and J. C. Kelly, Ion Implantation: Sputtering and Their Applications, Academic Press, (1976).
[9] S.M. Rossnagel, W.D. Sproul, K.O. Legg, editors. Sputter Deposition: Opportunities for Innovation in Advanced Surface Engineering. Switzerland,
Technomic Publishing Co., 1995.
[10] P.S. McLeod, L.D. Hartsough, “High-rate sputtering of aluminum for metalization of integrated circuits”, J. Vac. Sci. Technol. 14 (1977) 263.
[11] R.K. Waits, “Planar magnetron sputtering”, J. Vac. Sci. Technol. 15 (1978) 179.
[12] B. Window, N. Savvides, “Charged particle fluxes from planar magnetron sputtering sources”, J. Vac. Sci. Technol. A 4 (1986) 196.
[13] B. Window, N. Savvides, “Unbalanced dc magnetrons as sources of high ion fluxes”, J. Vac. Sci. Technol. A 4 (1986) 453.
[14] N. Savvides, B. Window, “Unbalanced magnetron ion-assisted deposition and property modification of thin films”, J. Vac. Sci. Technol. A 4 (1986) 504.
[15] D.G. Teer, “Magnetron sputtering ion plating”, Surf. Coat. Technol. 39-40 (1989) 565.
[16] W.D. Sproul, P.J. Rudnick, M.E. Graham, S.L. Rohde, “High-rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system”, Surf. Coat. Technol. 43-44 (1990) 270.
[17] S. Schiller, K. Goedicke, J. Reschke, V. Kirchoff, S. Schneider, F. Milde, “Pulsed magnetron sputter technology“, Surf. Coat. Technol. 61 (1993) 331.
[18] H. Holleck, V. Schier, “Multilayer PVD coatings for wear protection”, Surf. Coat. Technol. 76-77 (1995) 328.
[19] Z.J. Liu, A. Vyas, Y.H. Lu, Y.G. Shen, “Structural properties of sputter-deposited CNx/TiN multilayer films”, Thin Solid Films 479 (2005) 31.
[20] Y.H. Lu, P. Sit, Z.F. Zhou, et al., “X-Ray photoelectron spectroscopy characterization of reactively sputtered Ti-B-N thin films”, Surf. Coat. Technol. 187 (2004) 98.
[21] G. Berg, C. Friedrich, E. Broszeit, C. Berger, “Development of chromium nitride coatings substituting titanium nitride”, Surf. Coat. Technol. 86-87 (1996) 184.
[22] J.H. Hsieh, C. Liang, C.H. Yu, W. Wu, “Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering”, Surf. Coat. Technol. 108-109 (1998) 132.
[23] S.S. Eskildsen, C. Mathiasen, M. Foss, “Plasma CVD: process capabilities and economic aspects”, Surf. Coat. Technol. 116-119 (1999) 18.
[24] S. Wilson, T. Alpas, “Tribo-layer formation during sliding wear of TiN coatings”, Wear 245 (2000) 223.
[25] R. Wiedemann, H. Oettel, T. Bertram, V. Weihnacht, “Mechanical properties of TiN coatings”, Adv. Eng. Mater. 3 (2001) 865.
[26] A.A. Galska, J.C. Uht, P.M. Adaias, “Reactive and nonreactive ion mixing of Ni films on carbon substrates”, J. Vac. Sci. Technol. A 6 (1988) 99.
[27] S.C. Tjong, N.B. Wong, G. Li, S.T. Lee, “Metallization of CVD diamond films by ion beam assisted deposition”, Mater. Chem. Phys. 62 (2000) 241.
[28] S.C. Tjong, H.P. Ho, S.T. Lee, “Development of single- and multi-layered metallic films on diamond by ion beam-assisted deposition”, Diam. Rel. Mater. 10 (2001) 1578.
[29] J.S. Koehler, “Attempt to design a strong soild“, Phys. Rev. B 2 (1970) 547.
[30] S.L. Lehoczy, “Strength enhancement in thin-layered Al-Cu laminates”, J. Appl. Phys. 49 (1978) 5479.
[31] S.L. Lehoczy, “Retardation of dislocation generation and motion in thin-layered metal laminates”, Phys. Rev. Lett. 41 (1978) 1814.
[32] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura, “Formation of cubic-AlN in TiN/AlN superlattice”, Surf. Coat. Technol. 86-87 (1996) 225.
[33] U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, “Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness”, J. Appl. Phys. 62 (1987) 481.
[34] M. Shinn, L. Hultman, S.A. Barnett, “Growth, structure, and microhardness of epitaxial titanium nitride-niobium nitride (TiN/NbN) superlattices”, J. Mater. Res. 7 (1992) 901.
[35] X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, S.A. Barnett, “Deposition and properties of polycrystalline TiN/NbN superlattice coatings”, J. Vac. Sci. Technol. A10 (1992) 1604.
[36] X. Chu, S.A. Barnett, “Model of superlattice yield stress and hardness enhancements”, J. Appl. Phys. 77 (1995) 4403.
[37] H. Wrzesinska, J. Ratajczak, K. Studzinska, J. Katcki, “Transmission electron microscopy of hard ceramic superlattices applied in silicon micro-electro- mechanical systems”, Mater. Chem. Phys. 81 (2003) 265.
[38] G.W. Nieman, J.R. Weertman, R.W. Siegel, “Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation”, Scr. Met. 23 (1989) 2013.
[39] G.W. Nieman, J.R. Weertman, R.W. Siegel, “Mechanical behavior of nanocrystalline Cu and Pd”, J. Mater. Res. 6 (1991) 1012.
[40] L. A. Giannuzzi, P. R. Howell, H. W. Pickering and W. R. Bitler, “Diffusion induced recrystallization during ion beam milling ”, Scr. Metall. Mater. 24 (1990) 2407.
[41] A.M. El-Sherik, U. Erb, G. Palumbo, K.T. Aust, “Deviations from. Hall-Petch behavior in as-prepared nanocrystalline nickel”, Scr. Metall. Mater. 27 (1992) 1185.
[42] R.W. Siegel, G.E. Fougere, “Mechanical properties of nanophase metals”, Nanostruct. Mater. 6 (1995) 205.
[43] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, “On the validity of the. Hall-Petch relationship in nanocrystalline materials”, Scr. Metal. 23 (1989) 1679.
[44] K. Lu, W.D. Wei, J.T. Wang, “Microhardness and fracture properties of. nanocrystalline Ni-P alloy”, Scr. Metall. Mater. 24 (1990) 2319.
[45] G.E. Fougere, J.R. Weertman, R.W. Siegel, S. Kim, “Grain-size dependent hardening and softening of nanocrystalline Cu and Pd”, Scr. Metall. Mater. 26 (1992) 1879.
[46] D.A. Konstantinidis, E.C. Aifantis, “On the Anomalous Hardness of Nanocrystalline Materials”, Nanostruct. Mater. 10 (1998) 1111.
[47] G. Palumbo, S.J. Thorpe, K.T. Aust, “On the contribution of triple junctions to the structure and. properties of nanocrystalline materials”, Scr. Metal. Mater. 24 (1990) 1347.
[48] C. Suryanarayana, D. Mukhopadhyay, S.N. Patankar, F.H. Froes, “Grain size effects in nanocrystalline materials”, J. Mater. Res 7 (1992) 2114.
[49] P.G. Sanders, C.J. Youngdahl, J.R. Weertman, “The strength of nanocrystalline metals with and without flaws”, Mater. Sci. Eng. A 234-236 (1997) 77.
[50] L.S. Palatnik, A.I. Il'inskii, N.P. Sapelkin, “Strength of multilayered vacuum condensates”, Sov. Pys. Solid State 8 (1967) 2016.
[51] L.S. Palatnik, A.I. Il'inskii, “Stabilization of high-strength vacuum-deposited films”, Doklady Sov. Phys.: Techn. Phys. 9 (1964) 93.
[52] R.W. Springer, D.S. Catlett, ”Structure and mechanical properties of AlxOy vacuum-deposited laminates”, Thin Solid Films 54 (1978) 197.
[53] B.A. Movchan, A.V. Demchishin, G.F. Badilenko, Bunshah, et al., “Structure- property relationships in microlaminate TiC/TiB2 condensates”, Thin Solid Films 97 (1982) 215.
[54] M. Kato, T. Mori, L.H. Schwartz, “Hardening by spinodal modulated structure”, Acta Metall. 28 (1980) 285.
[55] H. Holleck, H. Schulz, “Advanced layer material constitution”, Thin Solid Films 153 (1987) 11.
[56] A.F. Jankowski, “Modelling the supermodulus effect in metallic multilayers”, J. Phys. F 18 (1988) 413.
[57] M. Shinn, L. Hultman, S.A. Barnett, “Growth, structure, and microhardness of epitaxial TiN/NbN superlattices”, J. Mater. Res. 7 (1992) 901.
[58] W.D. Sproul, “Multilayer, multicomponent, and multiphase physical vapor deposition coatings for enhanced performance”, J. Vac. Sci. Technol. A 12 (1994) 1595.
[59] X. Chu, S.A. Barnett, ”A model of superlattice yield stress and hardness enhancements”, Mater. Res. Soc. Symp. Proc. 382 (1995) 291.
[60] P. Robinson, A. Matthews, K.G. Swift, S.A. Franklin,” A computer knowledge- based system for surface coating and material selection”, Surf. Coat. Technol. 62 (1993) 662.
[61] A.A. Voevodin, A.L.Yerokhin, V.V. Lyubimov, “Formal order for search of the principle structure of multilayer coatings at their designing”, Phisik Status Solidi A 145 (1994) 565.
[62] A.A. Voevodin, S.D. Walck, J.S. Zabinski, ”Architecture multilayer nanocomposite coatings with super-hard diamond-like carbon layers for wear protection at high contact loads”, Wear, 203-204 (1997) 516.
[63] H. Holleck, “Material selection for hard coatings”, J. Vac. Sci. Technol. A 4 (1986) 2661.
[64] H. Holleck, H. Schulz, “Preparation and behaviour or wear-resistant TiC/TiB2, TiN/TiB2 and TiC/TiN coatings with high amounts of phase boundaries”, Surf. Coat. Technol. 36 (1988) 707.
[65] A.A. Voevodin, V.V. Lyubimov, A.L. Yerokhin, S.E. Spassky, ”Calculation of multilayer ion-plasma coating scheme”, Voprosy Atomnoy Naukii Techniki, 19 (1991) 66.
[66] V.V. Lyubimov, A.A. Voevodin, S.E. Spassky, A.L. Yerokhin, ”Stress analysis and failure possibility assessment of multilayer PVD coating”, Thin Solid Films 207 (1992) 117.
[67] C. Rebholz, H. Ziegele, A. Leyland, A. Matthews, “Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering”, Surf. Coat. Technol. 115 (1999) 222.
[68] B. Bhushan, Handbook of Micro/Nano Tribology, CRC press, (1995) 323.
[69] A. Leyland, A. Matthews, “On the significance of the H/E ratio in wear control: A nanocomposite approach to optimised tribological behavior”, Wear 246 (2000) 1.
[70] Y.L. Su, S.H. Yao, Z.L. Leu, et al., ”Comparison of tribological behavior of three films-TiN, TiCN and CrN-grown by physical vapor deposition”, Wear 213 (1997) 165.
[71] U. Wiklund, O. Wanstrand, M. Larsson, S.E. Hogmark, “Evaluation of new multilayered physical vapour deposition coatings in sliding contact”, Wear 236 (1999) 88.
[72] S. Zhang, Y. Fu , H. Du , X.T. Zeng , Y.C. Liu, “Magnetron sputtering of. nanocomposite (Ti, Cr)CN/DLC Coatings”, Surf. Coat. Technol. 162 (2002) 42.
[73] K.E. Cooke, M. Bamber, J. Bassas, et al., “Multilayer nitride coatings by closed field unbalanced magnetron sputter ion plating”, Surf. Coat. Technol. 162 (2003) 276.
[74] E. Martınez, J. Romero, A. Lousa, J. Esteve, “Wear behavior of nanometric CrN/Cr multilayers”, Surf. Coat. Technol. 163-164 (2003) 571.
[75] J. Romero, E. Martınez, J. Esteve, A. Lousa, “Nanometric chromium nitride/chromium carbide multilayers by r.f. magnetron sputtering”, Surf. Coat. Technol. 180-181 (2004) 335.
[76] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, “Toughening of hard nanostructural thin films: a critical review“, Surf. Coat. Technol. 198 (2005) 2.
[77] K. Yamamotoa, S. Kujimeb, K. Takaharab, “Properties of nano-multilayered hard coatings deposited by a new hybrid coating process: Combined cathodic arc and unbalanced magnetron sputtering”, Surf. Coat. Technol. 200 (2005) 435.
[78] A. Pinyol, E. Bertran, C. Corbella, et al., “Properties of W/a-C nanometric multilayers produced by RF-pulsed magnetron sputtering”, Diam. Relat. Mater. 11 (2002) 1000.
[79] M.J.H. Kessels, J. Verhoeven, A.E. Yakshin, F.D. Tichelaar, F. Bijkerk, “Ion beam induced intermixing of interface structures in W/Si multilayers”, Nucl. Instrum. Meth. B 222 (2004) 484.
[80] Y.L. Su, S.H. Yao, “On the performance and application of CrN coating”, Wear 205 (1997) 112.
[81] H. Scheerera, T.H. Hochea, E. Broszeit, et al., “Effects of the chromium to aluminum content on the tribology in dry machining using (Cr,Al)N coated tools”, Surf. Coat. Technol. 200 (2005) 203.