簡易檢索 / 詳目顯示

研究生: 楊景立
Yang, Jing-Li
論文名稱: 氧化銦錫系化學感測器之研製
Fabrication of Indium-Tin-Oxide (ITO) Based Chemical Sensors
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 121
中文關鍵詞: 氧化銦錫氣體感測器葡萄糖生物感測器固定化
外文關鍵詞: ITO, Gas sensor, Glucose, Biosensor, Immobilization
相關次數: 點閱:79下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,半導體式的氣體感測器因擁有高靈敏度、體積小和製程簡單之特性而逐漸成為氣體感測器發展之主流。此外,生物感測器之成長與應用也蓬勃發展於各個領域,例如醫藥、化學、化工領域和食品工業等,有鑑於此,本論文是利用氧化銦錫薄膜作為氣體感測器之感測膜及葡萄糖生物感測器之基材。氧化銦錫是一種n型的半導體材料且具有相當高的導電性和透光性,在此研究中,氧化銦錫的組成與結構可由原子力顯微鏡、X光薄膜繞射分析儀、掃描式電子顯微鏡等,進行薄膜結構與品質之分析。
    在氣體感測實驗中,感測器之氧化銦錫薄膜是利用射頻濺鍍的方式沉積在藍寶石基材上,並加入不同的表面處理方式例如:(1) 基板變溫、(2) 金奈米點、(3)結合基板變溫和金奈米點的方式,改變氧化銦錫薄膜的型態,且進一步研究其感測能力及薄膜特性並討論之。
    在葡萄糖感測實驗中,感測器元件是使用氧化銦錫薄膜,並利用不同的酵素固定化法固定於氧化銦錫薄膜之上,例如:(1) 包埋法、(2) 交聯法、(3) 膠囊法的方式,以達到固定葡萄糖氧化酵素酶之目的。在本研究中,我們利用檢量線來分析元件之靈敏度,並探討及分析緩衝液之酸鹼值和緩衝能力對葡萄糖溶液濃度感測的影響,並量測元件的暫態響應、操作次數及存放天數的穩定度。
    在本論文第五章中,我們提出幾項未來改善元件感測特性及元件穩定度之可行方法及研究方向,預期可得到更好的感測靈敏度及更長的元件量測壽命。

    In recent years, semiconductor-based gas sensors have become the mainstream in the sensing territory due to its high sensing response, small size, and simple fabrication. Also, the development and application of biosensors have expanded in various fields such as medicine, chemical, and food industry. In this study, gas sensors and glucose biosensors were based on the indium tin oxide (ITO) thin film which is an n-type semiconductor with a superior electrical conductivity and optical transparency. The composition and structure of the thin film could be acquired by a series of atomic force microscope (AFM), x-ray diffraction (XRD), and scanning electron microscope (SEM) measurements.
    For gas sensing, ITO thin film-based sensors were fabricated by RF sputtering with (a) substrate-preheated temperature, (b) Au-nanodots, and (c) in a combination of substrate-preheated temperature and Au-nanodots treatments. The characteristics of the studied sensors were studied and demonstrated.
    For glucose sensing, ITO thin film-based pH sensors were used and various immobilizations of enzymes were accomplished by (a) entrapment, (b) cross-linking, and (c) encapsulation methods. The measurements of (i) calibration curves, (ii) influences of the pH value, (iii) buffer capacity, (iv) response time, and (v) operation and storage stability of the studied device were also discussed and demonstrated in this thesis.
    The possible suggestions for improvement of the sensing response and the stability of the studied devices were also addressed in chapter 5.

    CONTENTS Abstract……………………………………………………………………………….....i Figure Captions………………………………………………………………...….xvi Chapter 1 Introduction 1.1 Indium Tin Oxide (ITO).........................................................................................1 1.2 Gas Sensors............................................................................................................2 1.3 Glucose Biosensors………………………………………………………………2 1.4 Immobilization Technology………………………………………………………3 1.5 Gas and Bio-sensing Mechanisms………………………………………………..4 1.5.1 Gas Sensing Mechanism………………………………………………4 1.5.2 Bio-Sensing Mechanism………………………………………….….6 1.6 Summary…………………………………………………………………….…6 Chapter 2 Experimental 2.1 Fabrication and Preparation of ITO-Based Gas Sensor………………………….8 2.1.1 Device Structure………………………………………….……………8 2.1.2 Preparation of Device Substrate………………………….……………8 2.1.3 Fabrication of Gas Sensing Electrodes……………………………..….9 2.1.4 Deposition of ITO Sensing Film……………………………….….…..9 2.1.5 Different Treatments of ITO Sensing Film…………………….…...…9 2.2 Fabrication and Preparation of ITO-Based Glucose Biosensor………………...10 2.2.1 Device Structure……………………………………………………...10 2.2.2 Preparation of Device Substrate…………………………………..….10 2.2.3 Deposition of ITO Sensing Film……………………………………..10 2.2.4 Fabrication of Glucose Sensing Electrode………………………..….11 2.1.5 Different Immobilization Methods of Glucose Sensing Film………..11 2.3 Setup of Sensing Measurement……………………………………….…..…….12 2.3.1 Gas Sensing System Setup…………………………………….….….12 2.3.2 Glucose and pH Sensing System Setup………………………...…….13 2.4 Material Analyses….............................................................................................14 2.4.1 SEM………………………………………………………………..…14 2.4.2 XRD…………………………………………………………………..14 2.4.3 AFM……………………………………………………………….....15 Chapter 3 Gas-Sensing Characteristics of ITO-Based Gas Sensors 3.1 Introduction…………………………………………………………………......16 3.2 Device Fabrication…………………………………….…………………....16 3.3 Experimental Results and Discussions………………………………….………18 3.3.1 As-Grown ITO Thin Film…………………………………...……….18 3.3.2 Substrate-Preheated Temperature Treatment…………………………20 3.3.3 Au-Nanodots Treatment……………………………………………...22 3.3.4 Au-Nanodots and Substrate-Preheated Temperature Treatments 3.3.4.1 Ammonia Gas Sensing…………………………………….23 3.3.4.2 Hydrogen Gas Sensing…………………………………….25 3.4 Summary………………………………………………………………………..25 Chapter 4 Glucose Sensing Characteristics of ITO-Based Glucose Sensors 4.1 Introduction……………………………………………………………………..27 4.2 Device Fabrication……………………………………………………………...27 4.3 Experimental Results and Discussions……………………………………….…28 4.3.1 Calibration Curve of the Glucose Sensor………………………….…28 4.3.2 Influence of the pH value…………………………………………….29 4.3.3 Influence of the Buffer Capacity……………………………………..29 4.3.4 Response Time……………………………………………………….30 4.3.5 Operation Stability and the Storage Stability………………………...30 4.4 Summary………………………………………………………………………..30 Chapter 5 Conclusion and Future Works 5.1 Conclusion………………………………………………………………………32 5.2 Future Work……………………………………………………………………..32 References…………………………………………………………………………….35

    References
    1. Y. K. Su, Y. Z. Chiou, C. S. Chang, S. J. Chang , Y. C. Lin, and J. F. Chen, “4H-SiC metal–semiconductor–metal ultraviolet photodetectors with Ni/ITO electrodes,” Solid-State Electron., vol. 46, pp. 2237-2240, 2002.
    2. J. Philip, N. Theodoropoulou, G. Berera, J. S. Moodera, and B. Satpati, “High-temperature ferromagnetism in manganese-doped indium–tin oxide films,” Appl. Phys. Lett , vol.85, no. 5, pp. 777-779, Aug. 2004.
    3. S. M. Kim, K. H. Seo, J. J. Kim, H. Y. Lee, and J. S. Lee, “Preparation and sintering of nanocrystalline ITO powders with different SnO2 content,” J. Eur. Ceram. Soc., vol.26, no. 1-2, pp. 73-80, 2006.
    4. R. M. Carlson, “Automated Separation and Conductimetric Determination of Ammonia and Dissolved Carbon Dioxide,” Anal. Chem., vol. 50, pp. 1528-1531, 1978.
    5. M. Kambe, M. Fukawa, N. Taneda, K. Sato, “Improvement of a-Si solar cell properties by using SnO2 :F TCO films coated with an ultra-thin TiO2 layer prepared by APCVD,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3014-3020, 2006.
    6. M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, “Theoretical modeling of TiO2 /TCO interfacial effect on dye-sensitized solar cell performance,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2000-2009, 2006.
    7. K. Osaza, T. Ye, Y. Aoyagi, “Deposition of thin indium oxide film and its application to selective epitaxy for in situ processing,” Thin Solid Films, vol. 246, pp. 58-64, 1994.
    8. E. Aperathitis, M. Bender, V. Cimalla, G. Ecke, and M. Modreanu, “Properties of rf-sputtered indium-tin-oxynitride thin films,” J. Appl. Phys., vol. 94, pp. 1258-1266, 2003.
    9. N. Boonyopakorn, N. Sripongpun, C. Thanachayanont, and S. Dangtip, “Effects of substrate temperature and vacuum annealing on properties of ITO films prepared by radio-frquency magnetron sputtering,” Chin. Phys. Lett., vol. 27, no. 10, pp. 108103, Oct. 2010.
    10. Z. Jiao, M. Wu, J. Gu, X. Sun, “The gas sensing characteristics of ITO thin filmprepared by sol–gel method,” Sens. Actuator B-Chem., vol. 94, pp. 216-221, 2003.
    11. H. Mbarek, M. Saadoun, and B. Bessaïs, “Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing,” Mater. Sci. Eng. C-Biomimetic Supramol. Syst., vol. 26, pp. 500-504, 2006.
    12. A. Salehi, A. Nikfarjam, “Room temperature carbon monoxide sensor using ITO / n-GaAs Schottky contact,” Sens. Actuator B-Chem., vol. 101, pp. 394-400, 2004.
    13. K. S. Yoo, S. H. Park, J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuator B-Chem., vol. 108, pp. 159-164, 2005.
    14. Z. Jiao, M. Wu, Z. Qin, M. Lu, J. Gu, “The NO2 sensing ITO thin films prepared by ultrasonic spray pyrolysis,” Sensors, vol. 3, pp. 285-289, 2003.
    15. L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET,” Mater. Chem. Phys., vol. 70, no. 1, pp. 12-16, Apr. 2001.
    16. J. C. Chou, J. L. Chiang, and C. L. Wu, “pH and Procaine Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Indium Tin Oxide Glass,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 4838-4832, Jul. 2005.
    17. J. L. Chiang, S. S. Jhan, S. C. Hsieh, and A. L. Huang, “Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system,” Thin Solid Films, vol. 517, no. 17, pp. 4805-4809, Jul. 2009.
    18. C. H. Xu, S. Q. Shi, and C. Surya, “Gas Sensors Based on One-Dimensional Nanostructures,” Sensors, vol. 9, no. 12, pp. 9903-9924, Dec. 2009. 2.
    19. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-Zadeh, “Characterization of ZnO Nanobelt-Based Gas Sensor for H2 , NO2 , and Hydrocarbon Sensing,” IEEE Sens. J., vol. 7, no. 5-6, pp. 919-924, May-Jun. 2007.
    20. L. Tien, P. Sadik, D. Norton, L. Voss, S. Pearton, H. Wang, B. Kang, F. Ren, J. Jun, and J. Lin, “Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods,” Appl. Phys. Lett., vol. 87, no. 22, pp. 222106 - 222106-3, Nov. 2005.
    21. T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuator A, vol. 136, no. 1, pp. 244-248, May 2007.
    22. N. Ali, M. Hashim, and A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electron., vol. 52, no. 7, pp. 1071-1074, Jul. 2008.
    23. Y. Tsai, K. Lin, H. Chen, and I. Liu, “Transient response of a transistor-based hydrogen sensor,” Sens. Actuator B, vol. 134, no. 2, pp. 750-754, Sep. 2008.
    24. X. H. Wang, X. L. Wang, C. Feng, C. B. Yang, B. Z. Wang, J. X. Ran, H. L. Xiao, C. M. Wang, and J. X. Wang, “Hydrogen sensors based on AlGaN/AlN/GaN HEMT,” Microelectron. J., vol. 39, no. 1, pp. 20-23, Jan. 2008. 34.
    25. A. Foucaran, F. Pascal-Delannoy, A. Giani, A. Sackda, P. Combette, and A. Boyer, “Porous silicon layers used for gas sensor applications,” Thin Solid Films, vol. 297, no. 1-2, pp. 317-320, Apr. 1997.
    26. W. Shin, K. Tajima, Y. Choi, N. Izu, I. Matsubara, and N. Murayama, “Planar catalytic combustor film for thermoelectric hydrogen sensor,” Sens. Actuator B, vol. 108, no. 1-2, pp. 455-460, Jul. 2005.
    27. K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, and N. Murayama, “Micromechanical fabrication of low-power thermoelectric hydrogen sensor,” Sens. Actuator B, vol. 108, no. 1-2, pp. 973-978, Jul. 2005.
    28. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing 55 properties of a Pt-oxide-Al0.24 Ga0.76 As high-electron-mobility transistor,” Appl. Phys. Lett, vol. 86, no. 11, pp. 112103 - 112103-3, Mar. 2005.
    29. H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuator B, vol. 85, no. 1-2, pp. 10-18, Jan. 2002.
    30. P. Ripka, J. Kubik, M. Duffy, W. G. Hurley, and S. O’Reilly, “Current sensor in PCB technology,” Proc. IEEE, vol. 2, pp. 779-784, 2002.
    31. P. Tobias, A. Baranzahi, A. Spetz, O. Kordina, E. Janzen, and I. Lundstrom, “Fast chemical sensing with metal-insulator silicon carbidestructures,” IEEE Electron Device Lett., vol. 18, no. 6, pp. 287-289, 1997.
    32. K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” 1997.
    33. P. Moseley, “Solid state gas sensors,” Meas. Sci. technol., vol. 8, pp. 223-237, 1997.
    34. N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection,” IEEE T. Compon. Pack. A, vol. 18, no. 2, pp. 252-256, Jun. 1995.
    35. A. Mandelis and C. Christofides, “Physics, chemistry, and technology of solid state gas sensor devices,” 1993.
    36. S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultrasensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 825-835, May. 1992.
    37. W. Gopel, “New materials and transducers for chemical sensors,” Sens. Actuator B, vol. 18, no. 1-3, pp. 1-21, Mar. 1994.
    38. C. Christofides and A. Mandelis, “Solid state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, no. 6, pp. R1-R30, May. 1990.
    39. G. J. Maclay, W. J. Buttner, and J. R. Stetter, “Microfabricated amperometric gas 56 sensors,” IEEE Trans. Electron Devices, vol. 35, no. 6, pp. 793-799, Jun. 1988.
    40. S. R. Morrison, “Semiconductor gas sensors,” Sens. Actuator B, vol.2, pp. 329-341, 1982.
    41. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, no. 2-3, pp. 425-430, May. 2004.
    42. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, Chun-Yuan Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes,” Semicond. Sci. Technol., vol. 19, pp. no. 6, pp. 778-782, Jun. 2004.
    43. W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, no. 12, pp. 8175-8181, Jun. 1994.
    44. L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals (Pt, Pd, and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, no. 1-3, pp. 614-618, Mar. 1992.
    45. Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/GaAs-based Schottky diodes”, IEEE Trans. Electron Devices, vol. 50, no. 12, pp.2532-2539, Dec. 2003.
    46. K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B. vol. 94, no. 2, pp. 145-151, Sep. 2003.
    47. K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen 39 sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., vol. 18, no. 7, pp. 615-619, Jul. 2003.
    48. D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs -platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci. Technol. B, vol. 1, no. 3, pp. 602-607, Jul. 1983.
    49. W. C. Liu, H. J. Pan, H. I Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, no. 9, pp. 1938-1944, Sep. 2001.
    50. H. I. Chen and Y. I. Chou, “ A comparative study on hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, no. 2, pp. 104-110, Feb. 2003.
    51. S. Okuyama, K. Umemoto, K. Okauyama, S. Ohshima, and K. Matsushita, ” Pd/Ni-Al2O3-Al tunnel diode as high-concentration-hydrogen gas sensor,” J. Appl. Phys., vol. 36, no. 3A, pp. 1228-1232, Mar. 1997.
    52. S. Okuyama, H. Usami, K. Okauyama, H. Yamada, and K. Matsushita, ” Improved response time of Pd/Ni-Al2O3-Al tunnel diode hydrogen gas sensor,” J. Appl. Phys., vol. 36, no. 11, pp. 6905-6908, Nov. 1997.
    53. K. Mutamba, M. Flath, A. Sigurdardottir, A. Vogt, and H. L. Hartnagel, ” A GaAs pressure sensor with frequency output based on resonant tunneling diodes,” IEEE Trans. vol. 48, no. 6, pp. 1333-1337, Dec. 1999.
    54. C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd/oxide/Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, no. 6, pp. 390-392, Jun. 2003.
    55. L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device,” IEEE Electron Device Lett., vol. 2, no. 4, pp. 82-84, 1981.
    56. O. Casals, B. Barcones, C. Serre, J. R. Morante, P. Godignon, J. Montserrat, and J. Millan, “Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor,” Sens. Actuators B, vol. 109, no. 1, pp. 119-127, Aug. 2005.
    57. S. Pitcher, J. A. Thiele, H. Ren, and J. F. Vetelino, ”Current/voltage characteristics of a semiconductor metal oxide gas sensor,” Sens. Actuators B, vol. 93, no. 1-3, pp. 454-462, Aug. 2003.
    58. P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases,” Sens. Actuators B, vol. 43, no. 1-3, pp. 52-59, Sep. 1997.
    59. I. Lundström, “Hydrogen sensitive MOS-structures. 1. principles and applications,” Sens. Actuators, vol. 1, no. 4, pp. 403-426, 1981.
    60. S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, no. 5, pp. 194-196, May. 1990.
    61. R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen exposure,” IEEE Trans. Nucl. Sci., vol. 41, no. 6, pp. 1844-1853, Dec. 1994.
    62. T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, no. 9, pp. 1618-1622, Sep. 1994.
    63. I. C. Kizilyalli, J. W. Lyding, and K. Hess, “ Deuterium post-metal annealing of MOSFET’s for improved hot carrier reliability,” IEEE Electron Device Lett., vol. 18, no. 3, pp. 81-83, Mar 1997.
    64. H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “High sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron Lett., vol. 33, no. 6, pp. 535-536, Mar 1997.
    65. K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. 41 Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol, vol. 16, no. 12, pp. 997-1001, Jan. 2001.
    66. N. Singh, C. Yan, and P. S. Lee, “ Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors,” Sens. Actuator B-Chem., vol. 150, no. 1, pp. 19-24, Sep. 2010.
    67. T. Usagawa, and Y. Kikuchi, “Air-Annealing Effects for Pt/Ti Gate Si-Metal–Oxide–Semiconductor Field-Effect Transistors Hydrogen Gas Sensor,” Appl. Phys. Express, vol. 3, no. 4, pp. 047201, 2010.
    68. T. Kuzuya, S. Nakagawa, J. Satoh, Y. Kanazawa, Y. Iwamoto, M. Kobayashi, K. Nanjo, A. Sasaki, Y. Seino, C. Ito, K. Shima, K. Nonaka, and T. Kadowaki, “Report of the Committee on the classification and diagnostic criteria of diabetes mellitus,” Diabetes Res. Clin. Pr., vol. 55, no.1, pp. 65-85, Jan. 2002.
    69. H. Chahinian, Y. Ben Ali, A. Abousalham, S. Petry, L. Mandrich, G. Manco, S. Canaan, L. Sarda, “Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: Comparison with non-lipolytic and lipolytic carboxylesterases,” Bba.-Mol. Cell Biol. L., vol. 1738, no. 1-3, pp. 29-36, Dec. 2005.
    70. J. W. Hwang, S. K. Kim, J. S. Lee, I. S. Kim, “Gene expression of the biosynthetic enzymes and biosynthesis of starch during rice grain development,” Plant Biology, vol. 48, no. 4, pp. 448-455, Dec. 2005.
    71. Y. L. Yu, M. Shan, F. Hua, W. Xiao, X. Q. Chu, “Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil,” J. Agr. Food. Chem., vol. 54, no. 26, pp. 10070-10075, Dec. 2006.
    72. A. M. Klibanov, “Enzyme stabilization by immobilization,” Anal. Biochem., vol. 93, no. 1, pp. 1-25, 1979.
    73. X. Zhang, Jin, X. Y. Jin, C. Y. Xu Shen, X.Y. Shen, “Preparation and characterization of glutaraldehyde crosslinked chitosan nanofiltration membrane,” J. Appl. Polym. Sci., vol. 128, no. 6, pp. 3365-3671, Jun. 2013.
    74. M. Azami, M. Rabiee, F. Moztarzadeh, “Glutaraldehyde Cross linked Gelatin/hydroxyapatite Nanocomposite Scaffold, Engineered via Compound Techniques,” Polym. Composite., vol. 31, no. 12, pp. 2112-2120, Dec. 2010.
    75. P. Kensingh, W. Chulalaksananukul, S. Charuchinda, “Lipase immobilization on Scirpus grossus L.f. fiber support by glutaraldehyde-crosslinked technique for biodiesel synthesis,” J. Biotechnol., vol. 150, no. 1, pp. 163, Nov. 2010.
    76. K. F. Zhou, Y. H. Zhu, X. L. Yang, C. Z. Li, “Electrocatalytic Oxidation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite,” Electroanal., vol. 22, no. 3, pp. 259-264, Feb. 2010.
    77. M. Zhou, L. P. Guo, Y. Hou, X. J. Peng, “Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine,” Electrochim. Acta, vol. 53, no. 12, pp. 4176-4184, May 2008.
    78. Z. Kiomars, J. C. Mohammad, S. Mojtaba, H. Saman, A. Sakineh, Q. Mohammad, “Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore,” Talanta, vol. 93, pp. 37-43, May 2012.
    79. P. Gruendler, “Chemical Sensors,” Springer, Berlin, Chapter 1, pp. 9, 2007.
    80. G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, “A study on the microstructure and gas sensing properties of ITO nanocrystals,” Thin Solid Films., vol. 515, no. 24, pp. 8637-8640, Oct. 2007.
    81. C. S. Rout, M. Hegde, A. Govindaraj, and C. N. R. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18, no. 20, pp. 205504, May. 2007.
    82. J. C. Chou, H. Y. Yang, and C. W. Chen, “Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system,” Microelectron. Reliab., vol. 50, no. 5, pp. 753-756, May 2010.
    83. S. K. Wixson, W. J. White, H. C. Jr Hughes, C. M. Lang, and W. K. Marshall, “The effects of pentobarbital, fentanyl-droperidol, ketamine-xylazine and ketamine-diazepam on arterial blood pH, blood gases, mean arterial blood pressure and heart rate in adult male rats,” Lab Anim Sci., vol. 37, no. 6, pp. 736-742, Dec. 1987.
    84. J. C. Choua, H. Y. Yangb, C. W. Chenc, “Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system,” Microelectron. Reliab., vol. 50, no. 5, pp. 753-756, May 2010.
    85. D. M. Han, J. H. Lee, K. H. Jeong, and J. G. Lee, “Effects of substrate bias power on the surface of ITO electrodes during O-2/CF4 plasma treatment and the resulting performance of organic light-emitting diodes,” Met. Mater.-Int., vol. 16, no. 4, pp. 627-632, Aug. 2010.
    86. E. H. Kim, C. W. Yang, and J. W. Park, “Improving the delamination resistance of indium tin oxide (ITO) coatings on polymeric substrates by O-2 plasma surface treatment,” Curr. Appl. Phys., vol. 10, no. 3, pp. s510-s514, May. 2010.
    87. P. Cusumano, “Efficiency enhancement of organic light emitting diodes by NaOH surface treatment of the ITO anode,” Solid-State Electron., vol. 53, no. 9, pp. 1056-1058, Sep. 2009.
    88. Z. H. Huang, X. T. Zeng, X. Y. Sun, E.T. Kang, J. Y. H. Fuh, and L. Lu, “Influence of electrochemical treatment of ITO surface on nucleation and growth of OLED hole transport layer,” Thin Solid Films, vol. 517, no. 17, pp. 4810-4813, Jul. 2009.
    89. Z. H. Huang, X. T. Zeng, X. Y. Sun, E.T. Kang, J. Y. H. Fuh, and L. Lu, “Influence of plasma treatment of ITO surface on the growth and properties of hole transport 44 layer and the device performance of OLEDs,” Org. Electron., vol. 9, no. 1, pp. 51-62, Feb. 2008.
    90. D. J. Yun, D. K. Lee, H. K. Jeon, and S. W. Rhee, “Contact resistance between pentacene and indium-tin oxide (ITO) electrode with surface treatment,” Org. Electron., vol. 8, no. 6, pp. 690-694, Dec. 2007.
    91. H. Shin, C. Kim, C. Bae, J. S. Lee, J. Lee, and S. Kim, “Effects of ion damage on the surface of ITO films during plasma treatment,” Appl. Surf. Sci., vol. 253, no. 22, pp. 8928-8932, Sep. 2007.
    92. M. H. Jung, and H. S. Choi, “Surface treatment and characterization of ITO thin films using atmospheric pressure plasma for organic light emitting diodes,” J. Colloid Interface Sci., vol. 310, no. 2, pp. 550-558, Jun. 2007.
    93. S. Archambeau, I. Seguy, P. Jolinat, J. Franc, P. Destruel, T. P. Nguyen, and H. Bock, “Stabilization of discotic liquid organic thin films by ITO surface treatment,” Appl. Surf. Sci., vol. 253, no. 4, pp. 2078-2086, Dec. 2006.
    94. Z. H. Huang, X. T. Zeng, E. T. Kang, J. Y. H. Fuh, L. Lu, and X. Y. Sun, “Electrochemical treatment of ITO surface for performance improvement of organic light-emitting diode,” Electrochem. Solid State Lett., vol. 9, no. 6, pp. H39-H42, 2006.
    95. S. Besbes, O. H. Ben, J. Davenas, L. Ponsonnet, N. Jaffrezic, and Alcouffe P, “Effect of surface treatment and functionalization on the ITO properties for OLEDs,” Mater. Sci. Eng. C-Biomimetic Supramol. Syst., vol. 26, no. 2-3, pp. 505-515, Mar. 2006.
    96. C. Kim, B. Lee, H. J. Yang, M. H. Lee, J. G. Lee, and H. Shin, “Effects of surface treatment on work function of ITO (Indium Tin Oxide) films,” J. Korean. Math. Soc., vol. 47, pp. S417-S421, Nov. 2005.
    97. L. Wang, X. Q. Zhang, P. Lin, D. P. Xiong, and S. H. Huang, “Influence of novel surface treatment of ITO anodes on the performance of OLED,” J. Electron Spectrosc. Relat. Phenom., vol. 25, no. 8, pp. 1207-1209, Aug. 2005.
    98. Y. H. Yun, J. W. Choi, and S. C. Choi, “Surface treatment of Indium Tin Oxide (ITO) thin films synthesized by chemical solution deposition,” J. Ceram. Process. Res., vol. 5, no. 4, pp. 395-398, 2004.
    99. J. J. Kim, and S. H. Cha, “Optimized surface treatment of indium tin oxide (ITO) for copper electroless plating,” Jpn. J. Appl. Phys., vol. 41, no. 11A, pp. L1269-1271, Nov. 2002.
    100. M. H. Jung, and H. S. Choi, “Surface Treatment of Indium Tin Oxide Using Radio Frequency Atmospheric and Low Pressure Plasma for OLEDs,”J. Electrochem. Soc. , vol. 516, no. 7, pp. 1370-1373, Feb. 2008.
    101. E. S. Lee, J. H. Choi, and H. K. Baik, “Surface cleaning of indium tin oxide by atmospheric air plasma treatment with the steady-state airflow for organic light emitting diodes,” Surf. Coat. Technol., vol. 201, no. 9-11, pp. 4973-4978, Feb. 2007.
    102. Y. J. Lin, C. F. You, and C. L. Tsai, “Effects of (NH 4 ) 2 S x treatment on surface work function and roughness of indium–tin-oxide,” Appl. Surf. Sci., vol. 253, no. 8, pp. 3957-3961, Feb. 2007.
    103. J. A. Chaney, S. E. Koh, C. S. Dulcey, and P. E. Pehrsson, “Surface chemistry of carbon removal from indium tin oxide by base and plasma treatment, with implications on hydroxyl termination,” Appl. Surf. Sci., vol. 218, no. 1-4, pp. 258-266, Sep. 2003.
    104. J. Goldstein, D. Newbury, P. Echlin, C. Lyman, D. Joy, E. Lifshin, L. Sawyer, and J. Michael, Scanning electron microscopy and X-ray microanalysis. 2003: Plenum 46 Pub Corp.
    105. J. Goldstein and H. Yakowitz, Practical scanning electron microscopy: electron and ion microprobe analysis. 1975: Plenum Press New York.
    106. E. Wolf, “Solution of the Phase Problem in the Theory of Structure Determination of Crystals from X-Ray Diffraction Experiments,” Phys. Rev. Lett., vol. 103, no. 7, pp. 075501, Aug. 2009.
    107. G. Bauer and W. Richter, Optical characterization of epitaxial semiconductor layers. 1996: Springer Berlin.
    108. W. H. Zachariasen and E. L. Hill, “The Theory of X-ray Diffraction in Crystals,” J. Phys. Chem., vol.50, pp. 289-290, Mar. 1946.
    109. Y. Roiter, and S. Minko, “AFM Single Molecule Experiments at the Solid−Liquid Interface: In Situ Conformation of Adsorbed Flexible Polyelectrolyte Chains,” J. Am. Chem. Soc., vol.127, no. 45, pp. 15688-15689, Nov. 2005.
    110. B. Bhushan, K. J. Kwak, and M. Palacio, “Nanotribology and nanomechanics of AFM probe-based data recording technology,” J. Phys.-Condes. Matter, vol.20, no. 36, pp. 365207, Sep. 2008.
    111. H. S. Yang, Y. F. Wang, S. J. Lai, H. J. Li, and F. S. Chen, “Application of Atomic Force Microscopy as a Nanotechnology Tool in Food Science,” J. Food Sci., vol.72, no. 4, pp. R65-R75, May. 2007.
    112. F. C. Simeone, C. Albonetti, amd M. Cavallini, “Progress in Micro- and Nanopatterning via Electrochemical Lithography,” J. Phys. Chem. C, vol.113, no. 44, pp. 18987-18994, Nov. 2009.
    113. S. R. Cohen, and A. Bitler, “Use of AFM in bio-related systems,” Curr. Opin. Colloid Interface Sci., vol.13, no. 5, pp. 316-325, Oct. 2008.
    114. Y. F. Dufrene, “Towards nanomicrobiology using atomic force microscopy,” Nat. 47 Rev. Microbiol., vol.6, no. 9, pp. 674-680, Sep. 2008.
    115. A. Engel, and D. J. Muller, “Observing single biomolecules at work with the atomic force microscope,” Nat Struct Biol, vol.7, no. 9, pp. 715-718, Sep. 2000.
    116. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-Zadeh, “Characterization of ZnO Nanobelt-Based Gas Sensor for H2 , NO2 , and Hydrocarbon Sensing,” IEEE Sens. J., vol. 7, no. 5-6, pp. 919-924, May-Jun. 2007.
    117. K. K. Makhija, A. Ray, R. M. Patel, and U. B. Trivedi, “Indium oxide thin film based ammonia gas and ethanol vapour sensor,” Bull. Mater. Sci., vol. 28, no. 1, pp. 9-17, Feb. 2005.
    118. G. Faglia, P. Nelli, and G. Sberveglieri, “Frequency effect on highly sensitive NO2 sensors based on RGTO SnO2 (Al) thin films,” Sens. Actuator B-Chem., vol. 19, no. 1-3, pp. 497-499, Apr. 1994.
    119. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssiers, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology., vol. 17, no. 19, pp. 4995-4998, Oct. 2006.
    120. J. Li, H. Fan, X. Jia, “Multilayered ZnO Nanosheets with 3D Porous Architectures : Synthesis and Gas Sensing Application,” J. Phys. Chem. C., vol. 114, no. 35, pp. 14684-14691, Aug. 2010.
    121. N. Boonyopakorn, N. Sripongpun, C. Thanachayanont, and S. Dangtip, “Effects of substrate temperature and vacuum annealing on properties of ITO films prepared by radio-frquency magnetron sputtering,” Chin. Phys. Lett., vol. 27, no. 10, pp. 108103, Oct. 2010.
    122. Y. S. Jung, D. W. Lee, and D. Y. Jeon, “Influence of dc magnetron sputtering parameters on surface morphology of indium tin oxide thin films,” Appl. Surf. Sci., vol. 221, no. 1-4, pp. 136-142, Jan. 2004.
    123. Y. Sato, M. Taketomo, N. Ito, and S. Yuzo, “Study on early stages of film growth for Sn doped In2O3 films deposited at various substrate temperatures,” Thin Solid Films., vol. 516, no. 17, pp. 5868-5871, Jul. 2008.
    124. J. H. Lee, “Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering,” J. Electroceram., vol. 23, no. 2-4, pp. 554-558, Oct. 2009.
    125. H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys., vol. 88, no. 10, pp. 6021-6025, Nov. 2000.
    126. N. L. Hung, H. Kim, S. K. Hong, and D. Kim, “Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots,” Sens. Actuator B-Chem., vol. 151, no. 1, pp. 127-132, Nov. 2010.
    127. L. T. Ying, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung, S. K. Hsiung, “Glucose ENFET doped with MnO2 powder,” Sens. Actuator B-Chem., vol. 76, no. 1-3, pp. 187-192, Jun. 2001.

    無法下載圖示 校內:2018-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE