簡易檢索 / 詳目顯示

研究生: 張浩宇
Chang, hao-Yu
論文名稱: 氧化鎂鈹鋅薄膜用於多重量子井之深紫外光發光二極體之研究
Investigation of MgBeZnO Thin Films Applied to Multi-Quantum Wells Deep Ultraviolet Light-Emitting Diodes
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 74
中文關鍵詞: 異質接面氧化鎂鋅氧化鎂鈹鋅量子井結構
外文關鍵詞: Heterojunction, MgZnO, MgBeZnO, Multi quantum well structure
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控共濺鍍系統,成功地製作出本質特性之氧化鎂鋅(i-MgZnO)以及氧化鎂鈹鋅(i-MgBeZnO)薄膜;濺鍍靶材為氧化鋅(ZnO, 99.9 %)、氧化鎂(MgO, 99.9 %)、鈹(Be, 99.9 %)。討論與分析氧化鎂鋅以及氧化鎂鈹鋅薄膜晶向性、光特性與電特性,並將氧化鎂鋅及氧化鎂鈹鋅薄膜應用於深紫外光發光二極體元件之主動區。藉由調變不同濺鍍功率,得到薄膜中不同含量之鎂原子、鈹原子與鋅原子、不同能隙值之氧化鎂鋅與氧化鎂鈹鋅薄膜。在薄膜穿透光譜量測部分,所有薄膜穿透率皆在85 %以上;固定氧化鋅靶材功率為175 W,調變氧化鎂靶材功率由50 W提升至150 W,氧化鎂鋅薄膜的能隙值可從3.22 eV調變至3.97 eV;此外,固定氧化鎂與氧化鋅靶材功率分別為75 W及175 W,並調變鈹靶材功率由5 W提升至18 W,氧化鎂鈹鋅薄膜的能隙值可從3.42 eV調變至3.98 eV。將不同能隙大小之薄膜(氧化鎂鋅與氧化鎂鈹鋅)應用在紫外光發光二極體元件,比較三種不同結構之主動層。而三種結構分別為傳統的p-i-n結構及兩種不同阻障層之量子井結構。在發光二極體元件之發光強度比較,量子井結構發光二極體具有較佳之發光強度,因為量子井結構之主動層具有將載子侷限在主動層區域之能力,故能提升載子輻射復合發光之機率,提高發光二極體元件之發光效率。其中,p-i-n結構之主動層與量子井結構之井層,是以能隙值為3.44 eV之氧化鎂鋅所構成。兩種不同量子井之阻障層分別為氧化鎂鋅薄膜和氧化鎂鈹鋅薄膜,此兩者之薄膜能隙值為相似的,分別為3.97 eV與3.98 eV。而氧化鎂鈹鋅薄膜作為量子井阻障層之發光二極體元件,相較於以氧化鎂鋅作為量子井阻障層,擁有更佳之發光強度。歸因於氧化鎂鈹鋅阻障層具有較佳之薄膜品質。而在p-ZnO/i-MgZnO/i- MgBeZnO/n-MgZnO:Al量子井結構之深紫外光發光二極體,起始電壓及崩潰電壓分別為4.32 V及-11.3 V;而元件electroluminescence (EL)之發光波段,注入電流由5 mA提升至80 mA,所對應之發光波長由360.2 nm位移至368.1 nm;此一發光波長產生紅位移,歸因於主動區之熱效應的產生。

    Intrinsic MgZnO (i-MgZnO) and MgBeZnO (i-MgBeZnO) thin films of various component ratios were deposited using a radio frequency (RF) magnetron co-sputter system. Thus deposited films exhibited different energy bandgaps and were stacked alternately to form the active layers of multi-quantum well deep ultraviolet light-emitting diodes (UVLEDs). To compare the properties of the films of different composition, three UVLEDs with different active layer structures and layer composition were fabricated. Two of them were constructed with quantum well structures that had the same well layers (emission layers) but different barrier layers, i-MgZnO and i-MgBeZnO, respectively. These barrier layers were properly deposited to achieve nearly the same energy bandgap. The other one was the traditional p-i-n structure with the emission layer made from the same material as that in well layer of quantum well structure. All the three UVLEDs showed similar electroluminescence (EL) spectra located from 360.2 nm, when operated at injection currents 10 mA. However, the EL intensity of quantum wells structure UVLEDs was higher than the traditional p-i-n structure, which was attributed to the quantum wells structure that confines carriers in the well layers, and improves the probability of radiative recombination. Moreover, it was found that the quantum wells structure UVLEDs with i-MgBeZnO barrier layers had higher emission intensity, compared to the one with i-MgZnO barrier layers. It was also demonstrated that the electric performance of the quantum well UVLED with i-MgBeZnO barrier layers was better than the one with i-MgZnO barrier layers. In particular, for the deep UVLEDs with a quantum wells structure p-ZnO/i-MgZnO/i-MgBeZnO/n-MgZnO:Al, where the bandgap of the well layer i-MgZnO thin films was 3.44 eV, and for the barrier layer i-MgBeZnO the energy bandgap was 3.98 eV, the turn-on voltage and the breakdown voltage were 4.32 V, and -11.3 V, respectively. The better performance for the UVLED with i-MgBeZnO barrier layers could be attributed to the better crystalline quality was measured by X-ray diffraction (XRD). It indicates that the quaternary i-MgBeZnO is a suitable material to be applied in deep UVLEDs.

    摘要….……………………………………………………………………..I Abstract……………………………………………………………………...III 致謝…………………………………………………………………….........V 目錄……………………………………………………………………......VII 表目錄…………………………………………………………………...…XI 圖目錄……………………………………………………………………..XII 第一章 序論………………………………………………………………….1 1.1 前言….………………...…………………………….……….…………..1 1.2 研究動機……....…………………………………….…………...............2 參考文獻……………………………………………………………………...4 第二章 理論………………………………………………………………….8 2.1 射頻磁控三靶共濺鍍系統………………………………………………8 2.1.1基本濺鍍法介紹….............………………………………………...8 2.1.2電漿濺鍍法…………………………………………………………8 2.1.3 DC & 射頻RF濺 鍍原理介紹…………………………………...9 2.1.4磁控射頻濺鍍介紹………………………………………………..10 2.2發光二極體(Light-Emitting Diode)之相關理論……………………….10 2.2.1直接能隙…………………………………………………………..10 2.2.2發光二極體………………………………………………………..11 2.2.3光的吸收與放射…………………………………………………..12 2.2.4受激發射(Stimulated Emission) …………………………………13 2.2.5自發輻射(Spontaneous Emission) ……………………………….14 2.3 X光繞射與布拉格理論…………………………………………………14 2.4 薄膜能隙值之計算……………………………………………………..16 2.5薄膜穿透&光學能隙之計算……………………………………………16參考文獻…………………………………………………………………….24 第三章元件製程及量測儀器…………………………………………….…26 3.1發光二極體元件結構……………………………………………………26 3.2元件製作流程……………………………………………………………26 3.2.1 元件基板清潔……………………………………………………26 3.2.2 濺鍍電洞注入層…...…….………………………………………27 3.2.3 黃光定義P電極區域 (A光罩圖形) ……………………………27 3.2.4 P電極製程………………………………………………………..28 3.2.5 黃光定義主動層及電子注入層之區域 (B光罩圖形)…………28 3.2.6 濺鍍主動層及電子注入層………………………………………28 3.2.7 黃光定義N電極區域 (C光罩圖形)……………………………29 3.2.8 N電極之製程…………………………………………………..…29 3.3. 量測儀器………………………………………………………….……30 3.3.1電子束蒸鍍系統……………………………………………..……30 3.3.2霍爾量測系統………………..……………………..………..……30 3.3.3 UV-VIS-NIR光譜分析儀………………………...………………32 3.3.4光致發光量測, Photoluminescence…………..…...………………32 3.3.5能量分散式光譜儀量測……………………………..……………33 3.3.6電流-電壓量測系統………………………………..……………..34 3.3.7電激發光量測系統, Electroluminescence………..………………34 參考文獻………………………………………………………………….…44 第四章 實驗結果與討論…………………………………………………46 4.1薄膜之量測分析…………………………………………………………46 4.1.1 薄膜X光繞射量測分析…………………………………………46 4.1.2 薄膜霍爾效應量測分析…………………………………………47 4.1.3薄膜成分EDS量測分析…………………………………….……48 4.1.4 薄膜穿透率量測分析……………………………………………49 4.1.5 薄膜光致螢光(PL)量測分析………………………….…………50 4.2 發光二極體元件之量測分析……………………………..……………51 4.2.1 發光二極體元件電極歐姆接觸特性……………………………51 4.2.2發光二極體元件電壓-電流曲線特性……………………………52 4.2.3發光二極體元件EL曲線特性……………………………………54 4.2.4不同注入電流之元件EL曲線特性………………………………55 參考文獻………………………………….…………………………………68 第五章結論 ………………………….……………………………………...73

    第一章
    [1] A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition,” Appl. Phys. Lett., vol. 89, pp. 123902-1-123902-3, 2006.
    [2] X. D. Chen, C. C. Ling, S. Fung, C. D. Beling, Y. F. Mei, R. K. Y. Fu, G. G. Siu, and P. K. Chu, “Current transport studies of ZnO/p-Si heterostructures grown by plasma immersion ion implantationand deposition,” Appl. Phys. Lett., vol. 88, pp. 132104-1-132104-3, 2006.
    [3]H. Frenzel, M. Lorenz, A. Lajn, H. von Wenckstern, G. Biehne, H. Hochmuth, and M. Grundmann, “ZnO-based metal-semiconductor field-effect transistors on glass substrates,” Appl. Phys. Lett., vol. 95, pp. 153503-1-153503-3, 2009.
    [4] D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan, and L. M. Irving, “Stable ZnO thin film transistors by fast open air atomic layer deposition,” Appl. Phys. Lett., vol. 92, pp. 192101-1-192101-3, 2008.
    [5] K. Lee, J. H. Kim, and S. Im, “Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric,” Appl. Phys. Lett., vol. 88, pp. 023504-1-023504-3, 2006.
    [6] X. W. Sun, B. Ling, J. L. Zhao, S. T. Tan, Y. Yang, Y. Q. Shen, Z. L. Dong, and X. C. Li, “Ultraviolet emission from a ZnO rod homojunction light-emitting diode,” Appl. Phys. Lett., vol. 95, pp. 133124-1-133124-3, 2009.
    [7] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique,” Appl. Phys. Lett., vol. 91, pp. 231113-1-231113-3, 2007.
    [8] E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett., vol. 89, pp. 221109-1-221109-3, 2006.
    [9] J. B. K. Law, and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett., vol. 88, pp. 133114-1-133114-3, 2006.
    [10] C. Y. Lu, S. J. Chang, S. P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang, Y. Z. Chiou, C. L. Hsu, and I. C. Chen, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates,” Appl. Phys. Lett., vol. 89, pp. 153101-1-153101-3, 2006.
    [11] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy”, Appl. Phys. Lett., vol. 72, pp. 2466-2468, 1998.
    [12] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, “Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices”, Appl. Phys. Lett., vol. 75, pp. 980-982, 1999.
    [13] A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G. K. L. Wong, Y. Matsumoto, and H. Koinuma, “Room-temperature stimulated emission of excitons in ZnO/(Mg,Zn)O superlattices”, Appl. Phys. Lett., vol. 77,pp. 2204-2206, 2000.
    [14] O. Madelung, Semiconductors: Data Handbook, 3rd Ed. Springer, New York, 2003.
    [15] Y. J. Lin, P. H. Wu, C. L. Tsai, C. J. Liu, C.T. Lee, H. C. Chang, Z. R. Liu, and K.Y. Jeng, “Mechanisms of enhancing band-edge luminescence of Zn1−xMgxO prepared by the sol-gel method”, J. Phys. D: Appl. Phys., vol. 41, pp. 125103-1-125103-5, 2008.
    [16] Y. R. Ryu, T. S. Lee, A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park, C. J. Youn, and W. J. Kim, “Wide-band gap oxide alloy: BeZnO”, Appl. Phys. Lett., vol. 88, pp. 052103-1-052103-2, 2006.
    [17] J. M. Khoshman and M. E. Kordesch, “Optical constants and band edge of amorphous zinc oxide thin films”, Thin Solid Films, vol. 515, pp. 7393-7399, 2007.
    [18] C. Yang, X. M. Li, Y. F. Gu, W. D. Yu, X. D. Gao, and Y. W. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV”, Appl. Phys. Lett., vol. 93, pp. 112114-1-112114-3, 2008.
    [19] N. Panwar, J. Liriano, and R. S. Katiyar, “Structural and optical analysis of ZnBeMgO powder and thin films”, J. Alloy. Compd., vol. 509, pp. 1222-1225, 2011.

    第二章
    [1] X. Zhang, X. M. Li, T. L. Chen, J. M. Bian, and C. Y. Zhang, “Structural and optical properties of Zn1-xMgxO thin films deposited by ultrasonic spray pyrolysis“, Thin Solid Films, vol. 492, pp. 248-252, 2005.
    [2] X. Zhanga, H. Maa, Q. Wanga, J. Maa, F. Zonga, H. Xiaoa, F. Jia, and S. Houb, ”Structural and optical properties of MgxZn1-xO thin films deposited by magnetron sputtering”, Physica B, vol. 364, pp.157-161, 2005.
    [3] H. L. Shi, and Y. Duan, “Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study”, European Physical Journal B, vol. 66, pp. 439-444, 2008.
    [4] P. C. Wu, H. Y. Lee, and C.T. Lee, “Enhanced light emission of double heterostructured MgZnO/ZnO/MgZnO in ultraviolet blind light-emitting diodes deposited by vapor cooling condensation system”, Appl. Phys. Lett., vol. 100, pp. 131116-1-131116-3, 2012.
    [5] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, “Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices”, Appl. Phys. Lett., vol. 75, pp. 980-982, 1999.
    [6] K. Maejima H. Shibata, H. Tampo, K. Matsubara, and S. Niki, “Characterization of Zn1-xMgxO transparent conducting thin films fabricated by multi-cathode RF-magnetron sputtering”, Thin Solid Films, vol. 518, pp. 2949-2952, 2010.
    [7] H.Y. Lee, S. D. Xia, W.P. Zhang, L.R. Lou, J. T. Yan, and C.T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique”, J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.

    第三章
    [1] L.W. Lai, J. T. Yan, C. H. Chen, L. R. Lou, and C. T. Lee, “Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system”, J. Mater. Res., vol. 24, pp. 2252-22587, 2009.
    [2] K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, ”Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition“, Appl. Phys. Lett., vol. 85, pp. 1374-1376, 2004.
    [3] J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, and T. Ohshima, ”Carrier concentration induced band-gap shift in Al-doped Zn1−xMgxO thin films”, Appl. Phys. Lett., vol. 89, pp, 262107-1-262107-3, 2006.
    [4] J.M. Shieh, Y.F. Lai, Y.C. Lin, and J.Y. Fang, ”Photoluminescence: Principles, Structure,and Applications”, 奈米通訊,第十二卷,第二期,pp. 28-39, 2005.
    [5] H. Yu, S. Lycett, C. Roberts, and R. Murray, ”Time resolved study of self‐assembled InAs quantum dots”, Appl. Phys. Lett., vol. 69, pp. 4087-4089, 1996.
    [6] A. Y. Kobitski, K. S. Zhuravlev, H. P. Wagner, and D. R. T. Zahn, “Self-trapped exciton recombination in silicon nanocrystals”, Phys. Rev. B, vol. 63, pp.115423-1-115423-5, 2001.
    [7] 蔡曜駿,「具有銅基板之磷化鋁銦鎵發光二極體的製作」,國立中央大學光電科學研究所碩士論文,2005年。

    第四章
    [1] X. Dong, B. L. Zhang, X. P. Li, W. Zhao, X. C. Xia, H. C. Zhu, and G. T. Du, “Study on the properties of MgxZn1−xO-based homojunction light-emitting diodes fabricated by MOCVD”, J. Phys. D: Appl. Phys., Vol. 40, pp. 7298-7301, 2007.
    [2] A. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. P. Zhang, M. Asif Khan, A. Sarua, and M. Kuball, “ Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm,” Appl. Phys. Lett., vol. 81, no. 18, pp. 3491-3493, 2002.
    [3] Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I.. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys., vol. 107, no. 1, pp. 013103-1–013103-6, 2010.
    [4] N. M. Rada, and G. E. Triplett, “Thermal and spectral analysis of self-heating effects in high-power LEDs,” Solid-State Electron., vol. 54, no. 4, pp. 378-381, 2010.
    [5] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, no. 6, pp. 583-585, 2001.
    [6] P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett., vol. 89, no. 11, pp. 111112-1–111112-3, 2006.
    [7] S. Chu, J. Zhao, Z. Zuo, J. Kong, L. Li, and J. Liu, “Enhanced output power using MgZnO/ZnO/MgZnO double heterostructure in ZnO homojunction light emitting diode,” J. Appl. Phys., vol. 109, no. 12, pp. 123110-1–123110-4, 2011.
    [8] S. Im, B. J. Jin, and S. Yi, “Ultraviolet emission and microstructural evolution in pulsed-laser-deposited ZnO films”, J. Appl. Phys., vol. 87, no. 9, pp. 4558–4561 2000.
    [9] S. H. Jeong, B. S Kim, and B. T. Lee, “Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient”, Appl. Phys. Lett., vol. 82, no. 16, pp. 2625–2627, 2003.
    [10] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett., vol. 79, no. 7, pp. 943–945, 2001.
    [11] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films”, Appl. Phys. Lett., vol. 78, no. 16, pp. 2285–2287, 2001.
    [12] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition”, Appl. Phys. Lett., vol. 86, no. 22, pp. 221910-1–221910-3, 2005.
    [13] Z. Y Xue, D. H. Zhang, Q. P. Wang, and J. H. Wang, “The blue photoluminescence emitted from ZnO films deposited on glass substrate by rf magnetron sputtering”, Applied Surface Science, vol. 195, no. 1–4, pp. 126–129, 2002.
    [14] Z. Fang, Y. Wang, D. Xu, Y. Tan, and X. Liu, “Blue luminescent center in ZnO films deposited on silicon substrates”, Optical Materials, vol. 26, no. 3, pp. 239–242, 2004.
    [15] J. Lim, K. Shin, H. W. Kim, and C. Lee, “Effect of annealing on the photoluminescence characteristics of ZnO thin films grown on the sapphire substrate by atomic layer epitaxy”, Materials Science and Engineering: B, vol. 107, no. 3, pp. 301–304, 2004.
    [16] X. Wei, B. Man, C. Xue, C. Chen, and M. Liu, “Blue luminescent center and ultraviolet-emission dependence of ZnO films prepared by pulsed laser deposition”, Jpn. J. Appl. Phys., vol. 45, no. 11, pp. 8586–8591, 2006.
    [17] C. C. Lina, C. S. Hsiaoa, S. Y. Chena, and S. Y. Cheng, “Ultraviolet emission in ZnO films controlled by point defects”, J. Electrochem. Soc., vol. 151, no. 5, G285–G288, 2004.
    [18] D. Li, and G. Wei, “Influence of oxygen in sputtering and annealing processes on properties of ZnO:Ag films deposited by rf sputtering”, Chin. Phys. Lett., vol. 28, no. 3, pp. 036105-1–036105-3, 2011.
    [19] T. E. Park, D. C. Kim, B. H. Kong, and H. K. Cho, “Structural and optical properties of ZnO thin films grown by RF magnetron sputtering on Si substrates, Journal of the Korean Physical Society, vol. 45, pp. S697–S700, 2004.
    [20] E. S. Jung, J. Y. Lee, and H. S. Kim, “Structural and optical characteristics of ZnO films with oxygen content”, Journal of the Korean Physical Society, vol. 47, pp. S480–S484, 2005.
    [21] S. Golshahi, S. M. Rozati, and T. Ghasempoor, “Annealing treatment of ZnO thin films prepared by nonreactive e-beam evaporation technique”, Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 2, pp. 445–450, 2011.

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE