簡易檢索 / 詳目顯示

研究生: 傅翊昇
Fu, Yi-Sheng
論文名稱: 石墨烯作為硒擴散阻擋層並應用於太陽能電池之研究
A study of graphene as a selenium diffusion barrier layer for solar cells application
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: 石墨烯轉移硒化阻障層太陽能電池
外文關鍵詞: graphene, transfer, selenization, diffusion barrier, solar cell
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是研究石墨烯的阻障效果並嘗試應用在銅銦鎵硒(CIGS)太陽能電池中的背電極與吸收層間。在製作CIGS太陽能電池的CIGS吸收層時,Mo背電極在硒化過程中,一部份Mo容易被硒化成MoSe2的化合物,此化合物形成在CIGS層與Mo介面間,此MoSe2化合物有助於電池Mo背電極之歐姆接觸。但是,因為MoSe2的電阻值遠高過Mo,所以當MoSe2過厚時便會造成太陽能電池的串聯電阻過大,因此出現太陽能電池效率不佳的情況。
    在銅/石墨烯試片經過低溫200oC硒化後,我們發現試片之顏色仍是銅的顏色,然而,沒有石墨烯覆蓋之銅試片其顏色呈現黑色,此黑色物質證明是銅硒化合物,此實驗代表著:石墨烯可以阻障硒氣進入與底下的銅薄膜反應。但是在550℃硒化狀況下,我們發現:即便Mo上覆蓋了轉移之石墨烯,仍然會生成MoSe2,但是與Mo層沒有石墨烯的試片相比,覆蓋有石墨烯的試片仍然具有某種程度的延緩硒化的能力。經過多次石墨烯轉移之Mo試片,其XRD圖仍然出現明顯的MoSe2訊號,藉此我們推測:高溫550oC下,硒氣壓力極大(壓力是200oC時的一萬倍以上),硒氣應該是穿過石墨烯的晶粒(grain)晶界或缺陷,或是原本生長的石墨烯時不均勻產生之破洞,而這些狀況都可以導致硒氣體穿過石墨烯層,因而Mo被硒化了。
    我們進行了多種實驗,初步驗證了多晶的石墨烯有阻障硒氣的能力,但是石墨烯的晶粒晶界、破洞或缺陷限制了石墨烯阻障硒氣的能力,將來可以使用單晶石墨烯做更進一步的實驗。

    The thesis primarily investigates graphene’s capability as a barrier to block selenium diffusion for the application at the interface between absorber and back-electrode in CuInGaSe2 (CIGS) solar cells. During the selenization process to form the CIGS absorber film, a portion of the Mo electrode will be selenized to MoSe2, which film is located in between the Mo and CIGS layers. The Mo/CIGS interface become a ohmic contact when a MoSe2 layer exist. However, MoSe2 film is a highly resistive film and will results in a higher series resistance and degrade the conversion efficiency of the solar cells.
    We discovered that the post 200oC selenized Cu sample did not change its color when the Cu film was covered with an as-grown graphene film. In contrast, Cu sample changed to black color if Cu surface didn’t have a graphene layer on top. This black film is copper selenium compounds. The results indicate that the graphene layer is capable of blocking Se and prevent Se reacts with the underneath Cu film. As we raised the selenization temperature to 550oC using Mo samples. XRD results show that there is a MoSe2 peak for all samples, includes the sample with a multiple-transferred graphene film on top of the Mo electrode, but its degree of Mo being selenized is much less than the sample without a graphene blocking layer. For our best knowledge, the vapor pressure of selenium is at least four-order of magnitude higher than that at 200oC (~10-3 torr), Se gas must pass through graphene grain boundaries, pin holes, or defects, such that it can selenized thin Mo film.
    In summary, we have done several preliminary experiments to show that a polycrystalline graphene film has some degree Se-blocking capability. Graphene grain boundaries, pin holes or defects are the main reasons that limit its blocking capability. Further studies using single crystalline graphene layer is needed.

    中文摘要 II Summary IV 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 石墨烯簡介 1 1-2 石墨烯的製備方法 2 1-2-1機械剝離法 2 1-2-2印章切取轉印法 3 1-3 研究動機 9 第二章 實驗設備 10 2-1 實驗所需材料與藥品規格 10 2-2 實驗設備之介紹 11 2-2-1濺鍍系統 11 2-2-2快速熱退火系統 13 2-2-3旋轉塗佈機 14 2-2-4烘箱 15 2-3 分析儀器之介紹 16 2-3-1拉曼光譜儀 16 2-3-2掃描式電子顯微鏡(FE-SEM) 18 2-3-3 X光繞射儀(XRD) 22 第三章 實驗方法 25 3-1 基板的製作 25 3-2 石墨烯的生長步驟(Graphene growth process) 26 3-2-1清洗基板 26 3-2-2濺鍍鎳薄膜與塗布PMMA溶液: 27 3-2-3退火 27 3-3 石墨烯的轉移步驟(Graphene transfer process) 28 3-3-1轉移(Transfer) 28 3-3-2塗佈PMMA 28 3-3-3氯化鐵蝕刻 29 3-3-4轉移至基板 29 3-4 拉曼量測 30 第四章 結果與討論 31 4-1 實驗流程1 31 4-1-1量測結果分析1 33 4-1-2結果與討論1 36 4-2 實驗流程2 37 4-2-1量測結果分析2 39 4-2-2結果與討論2 41 4-3 實驗流程3 42 4-3-1量測結果分析3 44 4-3-2結果與討論3 48 4-4 實驗流程4 49 4-4-1量測結果分析 4 51 4-4-2結果與討論4 56 4-5 實驗流程5 57 4-5-1量測結果分析5 59 4-5-2結果與討論5 59 4-6 引用研究之相關討論 60 第五章 結論 62 參考文獻 63

    [1] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “of Monolayer Graphene,” Science (80-. )., vol. 321, no. July, pp. 385–388, 2008.
    [2] R. R. Nair, P. Blake, a. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and a. K. Geim, “Fine Structure Constant Defines Visual Transperency of Graphene,” Science (80-. )., vol. 320, no. June, p. 2008, 2008.
    [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. 5696, pp. 666–669, 2004.
    [4] A. K. Geim, K. S. Novoselov, and P. Bimonthly, “石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,” pp. 155–162, 2011.
    [5] X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett., vol. 7, no. 12, pp. 3840–3844, 2007.
    [6] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y. L. Chueh, Y. Zhang, R. Maboudian, and A. Javey, “Metal-catalyzed crystallization of amorphous carbon to graphene,” Appl. Phys. Lett., vol. 96, no. 6, pp. 4–6, 2010.
    [7] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, no. 11, 2008.
    [8] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness,” Carbon N. Y., vol. 45, no. 10, pp. 2017–2021, 2007.
    [9] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on Ni and Cu by carbon isotope labeling,” Nano Lett., vol. 9, no. 12, pp. 4268–4272, 2009.
    [10] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils.,” Science (80-. )., vol. 324, no. 5932, pp. 1312–1314, 2009.
    [11] Z. Juang, Y. Zhong, F. Chen, and L. Li, “Substrates by Chemical Vapor Deposition,” Nano Lett., no. 11, pp. 3612–3616, 2011.
    [12] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano, vol. 4, no. 1, pp. 43–48, 2010.
    [13] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
    [14] D. Makarov, M. Melzer, D. Karnaushenko, and O. G. Schmidt, “Shapeable magnetoelectronics,” Appl. Phys. Rev., vol. 3, no. 1, 2016.
    [15] D. Kondo, S. Sato, K. Yagi, N. Harada, M. Sato, M. Nihei, and N. Yokoyama, “Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes,” Appl. Phys. Express, vol. 3, no. 2, 2010.
    [16] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5–6, pp. 51–87, 2009.
    [17] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science (80-. )., vol. 324, no. 5932, pp. 1312–1314, 2009.
    [18] D. Ho Mer Lin, D. Manara, P. Lindqvist-Reis, T. Fanghänel, and K. Mayer, “The use of different dispersive Raman spectrometers for the analysis of uranium compounds,” Vib. Spectrosc., vol. 73, pp. 102–110, 2014.
    [19] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved raman spectroscopy of single- and few-layer graphene,” Nano Lett., vol. 7, no. 2, pp. 238–242, 2007.
    [20] K. S. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes.,” Nature, vol. 457, no. 7230, pp. 706–10, 2009.
    [21] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, pp. 1–4, 2006.
    [22] R. S. Das and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib. Spectrosc., vol. 57, no. 2, pp. 163–176, 2011.
    [23] Ling Li, Xiangyu Chen, Ching-Hua Wang, Ji Cao, Seunghyun Lee, Alvin Tang, Chiyui Ahn, Susmit Singha Roy, Michael S. Arnold, and H.-S. Philip Wong, “Vertical and Lateral Copper Transport through Graphene Layers“ ACS Nano, VOL. 9 ’ NO. 8 ’ 8361–8367 ’ 2015

    下載圖示 校內:2022-06-16公開
    校外:2022-06-16公開
    QR CODE