簡易檢索 / 詳目顯示

研究生: 宋人豪
Song, Jen-Hao
論文名稱: C軸取向氮化鋁薄膜應用於鑽石表面聲波濾波器之研究
Study of c-Axis aluminum nitride thin films for diamond surface acoustic wave device applications
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 81
中文關鍵詞: 表面聲波濾波器氮化鋁鑽石
外文關鍵詞: surface acoustic wave, diamond, aluminum nitride
相關次數: 點閱:54下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

      隨著行動電話的普遍,無線網路與衛星傳播的發展,使得高頻元件的需求增加。擁有體積小及濾波效果佳等優點的表面聲波濾波器元件因而變的相當熱門。表面聲波濾波器元件的頻率決定於材料的表面聲波波速。鑽石擁有超過10000m/s的表面聲波波速,是所有材料中最高的。但是鑽石不具有壓電特性,必須在其表面鍍上一層壓電薄膜才能使其成為一個令人滿意的表面聲波濾波器元件。
      有鑑於鑽石與氮化鋁的結合可達到高的操作頻率,因此成為一個新且令人注目的研究。不同從優取向的氮化鋁薄膜擁有不同的壓電特性,但其中以(002)從優取向(c軸取向)之壓電特性最佳。因此在本研究將探討製程參數對c軸取向之影響。
      結果顯示較高的濺鍍功率與越低的氮氣流量、工作壓力、濺鍍距離和適當的溫度,越容易沈積(002)從優取向氮化鋁薄膜於鑽石基板上,乃因越高能量的濺鍍原子對形成(002)表面越有利。除此之外,由於鑽石與c軸取向的氮化鋁擁有較小的晶格不匹配使得容易形成c軸取向的沈積。
      實驗利用此研究之最佳參數製造氮化鋁/鑽石表面聲波濾波器元件。所測得的中心頻率約293.75MHz,對應之波速值為9400m/s,由此可得知鑽石有助於提升表面聲波濾波器元件特性,且氮化鋁機電耦合係數為0.35%.

    Abstract

      The demand for high-frequency devices has raised due to the increase spread of mobile telephones, satellite broadcasting and wireless local area network system. SAW devices have become popular due to its advantages of small size and fine filtering character.
      The center frequency of the SAW filters is determined by SAW velocity of material. Diamond has the highest SAW among all substances and its value more than 10000m/s. However, diamond is not piezoelectric, its high acoustic propagation makes it a desirable substrate for SAW devices when coupled with piezoelectric thin films.
      The use of AlN in combination with diamond is new and attractive for operating at very high frequencies. AlN thin films with various preferred orientation show different piezoelectric behavior, and (002) preferred orientation (c-axis) is shown to be better. So the relationship between c-axis orientation and process parameters will be investigated in this study.
      The results show that higher RF power and lower N2 gas flow rate, working pressure and sputtering distance and suitable substrate temperature , is easy to form the (002) preferential orientation of AlN films deposited on diamond substrate, which referred to the adatoms with a higher energy are energetically favorable for the formation of (002) surface planes. Besides, It is beneficial to deposit C-axis AlN thin film on diamond substrate due to a smaller lattice mismatch.
      We made AlN/diamond SAW device by optimizing sputtering conditions in this study . The center frequency of this SAW device is about 293.75MHz corresponding to 9400m/s velocity, which could reveal diamond promote the character of SAW and the К2 of AlN was 0.35%.

    總目錄 中文摘要…………………………………………………………Ⅰ Abstract…………………………………………………………Ⅱ 致謝………………………………………………………………Ⅲ 總目錄……………………………………………………………Ⅳ 圖目錄……………………………………………………………Ⅷ 表目錄……………………………………………………………Ⅸ 第一章、緒論.........................................1 1.1前言..............................................1 1.2研究目的..........................................2 第二章、基礎理論.....................................3 2.1 電漿的產生.......................................6 2.2 反應磁控濺鍍.....................................6 2.3 射頻濺射.........................................8 2.4 基板自偏壓效應..................................10 2.5 鍍層的成核......................................11 2.6 鍍層微結構的Thorton模型.........................12 2.7 氮化鋁薄膜......................................15 2.7.1 氮化鋁的基本特性..............................17 2.7.2 高c軸取向之氮化鋁薄膜.........................17 2.8 表面聲波元件壓電現象............................18 2.9 表面聲波元件參數................................21 2.9.1 聲波波速(Vp)..................................21 2.9.2機電耦合係數(K2)...............................21 2.9.3 溫度效應係數(TCD).............................22 2.9.4插入損失(IL)...................................23 第三章、實驗方法與步驟..............................25 3.1 實驗流程圖......................................25 3.2 實驗的原料......................................26 3.3 實驗設備........................................27 3.4 濺鍍的步驟與條件................................27 3.4.1基材前處理.....................................27 3.4.2 濺鍍流程......................................28 3.5 鍍層的分析......................................28 3.5.1 濺鍍速率的測量................................28 3.5.2 X-ray繞射分析.................................28 3.5.3 表面粗糙度分析................................31 3.6表面聲波元件製作.................................31 3.7 元件量測........................................37 第四章、結果與討論..................................34 4.1濺鍍參數對氮化鋁薄膜之影響.......................34 4.1.1濺鍍功率之影響.................................34 4.1.1.1濺鍍速率.....................................34 4.1.1.2 X光繞射分析.................................34 織構係數............................................40 半高幅寬............................................43 4.1.2氮氣流量之影響.................................43 4.1.2.1濺鍍速率.....................................43 4.1.2.2 X光繞射分析.................................46 織構係數............................................46 半高幅寬............................................48 4.1.3工作壓力之影響.................................51 4.1.3.1濺鍍速率.....................................51 4.1.3.2 X光繞射分析.................................51 織構係數............................................51 半高幅寬............................................55 4.1.4基板與靶材間距離之影響.........................57 4.1.4.1濺鍍速率.....................................57 4.1.4.2 X光繞射分析.................................57 織構係數............................................57 半高幅寬............................................57 4.1.5基板溫度之影響.................................61 4.1.5.1濺鍍速率.....................................61 4.1.5.2 X光繞射分析.................................64 織構係數............................................64 半高幅寬............................................65 4.2表面聲波濾波器元件製作與量測.....................68 第五章 結論.........................................75 參考文獻............................................76

    參考文獻

    1.Lord Raylaid, “On wave propagation along the plane surface of an elastic solid.”, Proc. London Math. Soc, Vol.7, pp.4-11, (1885).

    2.R. M. Whit and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett. Vol.17, pp.314-316, (1965).

    3.E. W. Park, “A theory of Surface Acoustic Wave (SAW) Filter”, Kieeme. Vol.13 No. 7, 8-13, (2000. 7).

    4.J. T. Glass, B.A. Fox, D.L. Dreifus, and B.R. Stoner, “Diamond for Electonics: Future Prospects of Diamond SAW Devices” MRS Bulletin /, 49-55, (September 1998).

    5.宋健民, “Superhard Materials”, 全華出版社,台灣,民國89年。

    6.K. Yamanouchi, T. Meguro, Y. Wagatsuma, H. Odagawa, and K. Yamamoto, “Nanometer Electrode Fabrication Technology Using Anodic Oxidation Resist and Application to Unidirectional Surface Acoustic Wave Transducers” Jpn. J. Appl. Phys. Part 1, 33, (1994).

    7.C. Deger, E. Born, H. Angerer, O. Ambacher, M.Stutzmann, J. Hornsteiner, E. Riha, and G. Fischerauer, “Sound velocity of AlxGa1-xN thin films obtained by surface acoustic wave measurement” Appl. Phys. Lett. 72, 2400, (1998).

    8.H. Okano, N. Tanaka, Y. Takhashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices” Appl. Phys. Lett. 64, 166, (1994).

    9.V. Mortet, O. Elmazria, M. Nesladek, G. Vanhoyland, M. Elhakiki, “Study of aluminium nitride/freestanding diamond surface acoustic waves filters” Diamond and Related Materials 12. 723-727, (2003).

    10.M. Ishihara, T. Nakamura, F. Kokai, Y. Koga, “Preparation of AlN and LiNbO3 thin films on diamond substrates by sputtering method” Diamond and Related Materials 11. 408-412, (2002).

    11.K. Higaki, H. Nakahata, H. Kitabayashi, S. Fujii, K. Tanabe, Y. Seki, S. Shikrar, “High power durability of diamond surface acoustic wave filter” IEEE Trans. Ultranson. Feerroelect. Freq. Control 44, 1395, (1997).

    12.H. Nakahata, H. Kitabayashi, T. Uemura, A. Hachigo, K. Higaki, S. Fujii, Y. Seki, K. Yoshida, S. Shikata, ”Study on Surface Acoustic Wave Characteristics of SiO2/Interdigital-Transducer/ZnO/Diamond Structure and Fabrication of 2.5 GHz Narrow Band Filter” Jpn. J. Appl. Phys. Part 1, 37, 2918, (1998).

    13.D. Liufu, K. C. Kao, “Piezoelectric, dielectric, and interfacial properties of aluminum nitride films “ J. Vac. Sci. Technol. A 16, 2360, (1998).

    14.R. Rodriguze-Cheng, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand, and A. Figueras, “Influence of the experimental conditions on the morphology of CVD AIN films” Journal of Crystal Growth. 133, 59-70, (1993).

    15.Chien-Chuan Cheng, Ying-Chung Chen, Horng-Jow Wang, and Wen-Rong Chen, “Morphology and Structure of Aluminum Nitride Thin Films on Glass Substrates” Jpn. J. Appl Phys. Vol.35, 1880-1885, (1996).

    16.B. Aspar, R. Rodrguez-Clement, A. Figuera, B. Armas and C. Combescure , “Influence of the experimental conditions on the morphology of CVD AIN films” Journal of Crystal Growth. 129, 56-66, (1993)

    17.K. S. Stevens. M. Kinniburgh, A. F. Schwatrzman, A. Ohtani, and R. Beresford, “Demonstration of a silicon field-effect transistor using AlN as the gate dielectric” Appl. Phys. Lett. 66, 3179-3181, (1995).

    18.宋健民, 台灣, 發明專利144267號, 1998.

    19.R. S. Naik, R. Reif, J.J. lutsky, C.G. Sodini, “Low-Temperature Deposition of Highly Textured Aluminum Nitride by Direct Current Magnetron Sputtering for Applications in Thin-Film Resonators” J. Electrochem. Soc. 146, 691, (1999).

    20.W. M. Yim, E. J. Stofko, P. J. Zanzuccgu, J. I. Pankove, M. Ettenberg and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap” J. Appl. Phys. 44, 292, (1973) .

    21.M. Morita, K. Tsubouchi and N. Mikoshiba, Jpn. J. Appl. Phys. 21, 1102, (1982).

    22.S. Yosida, S. Misawa, Y. Fjii, S. Takada, H. Hayakwa, S. Gonda, A. Itoh, J. Vac. Sci. Technol. 16, 990, (1979).

    23.U. Mazur, A. C. Clearly, J. Phys. Chem 94, 189, (1990).

    24.M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, Y. Ide, “Control of preferential orientation of AlN films prepared by the reactive sputtering method.” Thin Solid Films. 316, 152, (1998).

    25.S. M. Rossnagel, “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, USA, (1989)

    26.D. M. Mattox, “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U.S.A., (1982).

    27.Brian Chapman, “Glow discharge process”, John Wiley and Sons, New York, (1980).

    28.John A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of the Thick Sputtered Coating”, J. Vac. Sci. Technil. 11(4) p.66-670, (1974) .

    29.E. Ruiz, Santigo alvarez, P. Alemany, “Electric Structure Properties of AlN”, Physical Review B. 49 7115-7123, (1994).

    30.P. K. Kuo, G. W. Aumer, and Z. L. Wu, “Microstructure and ThermalConductivity of Epitaxial AlN Thim Film”, Thin Solid Films. 253, 223-227, (1994).

    31.嚴豐明,”高熱傳導率氮化鋁基版材料之簡介”, 材料與社會。71, 45-46, (1994).

    32.王宏灼,”反應性濺鍍法成長氮化鋁薄膜之研究” 國立中山大學電機工程研究所碩士論文。36, (1995)

    33.X. H. Xu, H. S. Wu, C .J. Zhang, Z. H. Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering.” Thin Solid Films 388, 62, (2001).

    34.Morito Akiyama,Tomohiro Harada, Chao-Nan Xu, Kazuhiro Nonaka, Tadahiko Watanabe, ”Statistical approach for optimizing sputtering conditions of highly oriented aluminum nitride thin films.” Thin Solid Films 350, 85-90, (1999).

    35.M. Ohring, “The Materials Science of thin films”, Academic Press, New Youk,(1992).

    36.Hsyi-En Cheng, Tiem-Chai Lin, Wen-Chien Chen, “Preparation of [002] oriented AlN thin films by mid frequency reactive sputtering technique” Thin Solid Films 425, 85-89, (2003).

    37.W X Cai, L Kang, P H Wu, S Z Yang and Z M Ji, “Fabrication of AlN thin films on different substrates at ambient temperature.” Supercond. Sci. Technol. 15, 1781-1783, (2002).

    38.Yoshikazu Nakamura, Yoshihisa Watanabe, Shigekazu Hirayama, Yuusaku Naota, ”Effect of ion beam energy on the synthesis of oriented aluminium nitride thin films.” Surface and Coatings Technology 76-77, 337-340, (1995)

    39.Won Taeg Lim, Byoung Keun Son, Dong Hae Kang, Chang Hyo Lee, “Structure properties of AlN films grown on Si, Ru/Si and ZnO/Si substrates.” Thin Solid Films 382, 56-60, (2002).

    40.Hao Cheng, Yong Sun, Peter Hing, “The influence of deposition conditions on substure and morphology of aluminum nitride films deposited by radio frequency reactive sputtering.” Thin Solid Films 434, 112-120, (2003).

    41.Bao-Shun Yau, Jaw-Lay Huang, “Effects of nitrogen flow on R.F. reactive magnetron sputtered silicon nitride films on high speed steel.” Surface and Coatings Technology, 71, 30-36, (1995).

    42.Yiwang Bao, Jaw-Lay Huang, “An Uneven Strain Model for Analysis of Residual Stress and Interface Stress in Laminate Composites.” J. of Composite Materials, Vol. 36, No. 14 (2002).

    43.楊恆傑,”直流式磁控濺鍍鋯及氧化鋯薄膜性質、結構與擴散阻障層應用之研究。” 國立成功大學材料科學及工程學系碩士論文,中華民國九十一年六月。

    下載圖示 校內:2005-07-19公開
    校外:2005-07-19公開
    QR CODE