| 研究生: |
陳駿宏 Chen, Chun-Hung |
|---|---|
| 論文名稱: |
碳化氮(PTI)之表面改質及其應用 Fabrication and Application of Functional group Modified poly (triazine imide) |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 光觸媒 、碳化氮 、表面改質 、異丙醇氧化 |
| 外文關鍵詞: | Photocatalyst, Poly triazine imide, surface functionalization, IPA oxidation. |
| 相關次數: | 點閱:59 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異丙醇官能基化PTI以一系列溫度為變數、透過溶劑熱反應方式成功製備。根據分析結果,經過官能化的程序後,主結構PTI依舊保持沒有遭受破壞。而從NMR跟XPS的分析結果得知,在經過異丙醇官能基化的過程後,額外的含氧官能基團(-C=O or –COOH/-COOR)生成於PTI表面,可做為活性點位於PTI表面。在亞甲藍光降解實驗中,120度下的氧化樣品(IPA-120)展現最好的光降解成效。這主要歸因於IPA-120樣品含有最適當量的含氧官能基團生成於材料表面,提供更好的電荷傳輸路徑且抑制電子電動對的再結合率,顯著的展現在PL的分析結果上面,同時地,更寬的吸收範為跟比表面積的提升同步的有效貢獻於光催化的表現上面,導致其相較於PTI擁有大約2.5倍的光降解提升成效。
Isopropanol functionalization PTI serious via solvothermal approach under various temperature conditions were successfully fabricated. According to the characterization results, PTI structure was still maintained after surface functionalization. Additional oxygen related functional groups (-C=O or –COOH/-COOR) arose from IPA functionalization process can be determined via 13C SSNMR and XPS results, which can serve as active sites on the PTI surface. Based on the MB photodegradation measurement, IPA-120 exhibited maximum enhancement on photocatalytic ability. This might be primary attributed to the optimize oxygen related functional groups on the IPA-120 samples can perform better charge separation and suppressed the recombination rate, which can be obviously observed on PL analysis. Simultaneously, the light absorption ability extended and specific surface area enhancement also synergistically contributed to the photocatalytic performance, which give rise to approximately 2.5 times higher degradation rate compare with pristine PTI.
References
[1] D. M. Teter and R. J. Hemley, “Low-Compressibility Carbon Nitrides,” Science 271, 53–55 (1996).
[2] L. Gmelin, “ Handbook of Chemistry,” Chapter 9, 378–394 (1855).
[3] T. S. Miller, A. B. Jorge, T. M. Suter, A. Sella, F. Corà, and P. F. McMillan, “Carbon nitrides: synthesis and characterization of a new class of functional materials,” Phys. Chem. Chem. Phys. 19, 15613–15638 (2017).
[4] J. Liebig, “Uber einige stickstoff-verbindungen,” Annalen der Pharmacie 10, 1–47 (1834).
[5] J. Liebig, “Ueber Mellon und Mellonverbindungen,” Justus Liebig’s Annalen der Chemie 50, 337–363 (1844).
[6] J. Liebig, “Ueber die Constitution der Mellonverbindungen,” Justus Liebig’s Annalen der Chemie 95, 257–282 (1855).
[7] E. C. Franklin, “The ammono carbonic acids,” Journal of the American Chemical Society 44, 486–509 (1922).
[8] J. H. Sturdivant and L. Pauling, “The structure of cyameluric acid, hydromelonic acid, and related substances,” Proceedings of the National Academy of Sciences of the United States of America 23, 615–620 (1937).
[9] C. E. Redemann and H. J. Lucas, “Some Derivatives of Cyameluric Acid and Probable Structures of Melam, Melem and Melon,” Journal of the American Chemical Society 62, 842–846 (1940).
[10] R. S. Hosmane, M. A. Rossman, and N. J. Leonard, “Synthesis and Structure of Tri-s-triazine,” Journal of the American Chemical Society 104, 5497–5499 (1982).
[11] E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, and A. D. Norman, “Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures,” New Journal of Chemistry 26, 508–512 (2002).
[12] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by x-ray powder diffractometry, solid-state NMR, and theoretical studies,” Journal of the American Chemical Society 125, 10288–10300 (2003).
[13] B. V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, and W. Schnick, “Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations - Structural characterization of a carbon nitride polymer,” Chemistry A European Journal 13, 4969–4980 (2007).
[14] T. Tyborski, C. Merschjann, S. Orthmann, F. Yang, M. C. Lux-Steiner, and T. Schedel-Niedrig, “Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications,” Journal of Physics Condensed Matter 25, 395402 (2013).
[15] Y. Wang, X. Wang, and M. Antonietti, “Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry,” Angewandte Chemie International Edition 51, 68–89 (2012).
[16] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, and S. P. Chai, “Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability?,” Chemical Reviews 116, 7159–7329 (2016).
[17] D. Dontsova, S. Pronkin, M. Wehle, Z. Chen, C. Fettkenhauer, G. Clavel, and M. Antonietti, “Triazoles: A New Class of Precursors for the Synthesis of Negatively Charged Carbon Nitride Derivatives,” Chemistry of Materials 27, 5170–5179 (2015).
[18] G. Demazeau, H. Montigaud, B. Tanguy, M. Birot, and J. Dunogue, “The Stabilization of C3N4: New Development of Such a Material as Macroscopic Sample,” Rev. High Pressure Sci. Technol. 7, 1345–1347 (1998).
[19] Z. Zhang, K. Leinenweber, M. Bauer, L. A. J. Garvie, P. F. McMillan, and G. H. Wolf, “High-pressure bulk synthesis of crystalline C6N9H3·HCl: A novel C3N4 graphitic derivative,” Journal of the American Chemical Society 123, 7788–7796 (2001).
[20] M. J. Bojdys, J. O. Müller, M. Antonietti, and A. Thomas, “Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride,” Chemistry A European Journal 14, 8177–8182 (2008).
[21] E. Wirnhier, M. Döblinger, D. Gunzelmann, J. Senker, B. V. Lotsch, and W. Schnick, “Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1-x)3.LiCl]: A crystalline 2D carbon nitride network,” Chemistry A European Journal 17, 3213–3221 (2011).
[22] M. B. Mesch, K. Bärwinkel, Y. Krysiak, C. Martineau, F. Taulelle, R. B. Neder, U. Kolb, and J. Senker, “Solving the Hydrogen and Lithium Substructure of Poly(triazine imide)/LiCl Using NMR Crystallography,” Chemistry A European Journal 22, 16878–16890 (2016).
[23] S. Y. Chong, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, A. Thomas, M. Antonietti, and M. J. Bojdys, “Tuning of gallery heights in a crystalline 2D carbon nitride network,” J. Mater. Chem. A 1, 1102–1107 (2013).
[24] C. Fettkenhauer, X. Wang, K. Kailasam, M. Antonietti, and D. Dontsova, “Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl2 eutectics,” J. Mater. Chem. A 3, 21227–21232 (2015).
[25] C. Fettkenhauer, J. Weber, M. Antonietti, and D. Dontsova, “Novel carbon nitride composites with improved visible light absorption synthesized in ZnCl2 -based salt melts,” RSC Adv. 4, 40803–40811 (2014).
[26] J. Kouvetakis, A. Bandari, M. Todd, B. Wilkens, and N. Cave, “Novel Synthetic Routes to Carbon-Nitrogen Thin Films,” Chemistry of Materials 6, 811–814 (1994).
[27] G. Algara-Siller, N. Severin, S. Y. Chong, T. Björkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, and M. J. Bojdys, “Triazine-based graphitic carbon nitride: A two-dimensional semiconductor,” Angewandte Chemie International Edition 53, 7450–7455 (2014).
[28] H. B. Zheng, W. Chen, H. Gao, Y. Y. Wang, H. Y. Guo, S. Q. Guo, Z. L. Tang, and J. Y. Zhang, “Melem: an efficient metal-free luminescent material,” J. Mater. Chem. C 5, 10746–10753 (2017).
[29] V. W. H. Lau, M. B. Mesch, V. Duppel, V. Blum, J. Senker, and B. V. Lotsch, “Low-molecular-weight carbon nitrides for solar hydrogen evolution,” Journal of the American Chemical Society 137, 1064–1072 (2015).
[30] A. Savateev, S. Pronkin, J. D. Epping, M. G. Willinger, C. Wolff, D. Neher, M. Antonietti, and D. Dontsova, “Potassium Poly(heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitride-like Materials for More Efficient Solar Hydrogen and Oxygen Evolution,” ChemCatChem 9, 167–174 (2017).
[31] Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, Q. Zhang, H. Xu, and H. Li, “Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution,” RSC Adv. 5, 101552–101562 (2015).
[32] B. Kurpil, K. Otte, M. Antonietti, and A. Savateev, “Photooxidation of N-acylhydrazones to 1,3,4-oxadiazoles catalyzed by heterogeneous visible-light-active carbon nitride semiconductor,” Applied Catalysis B: Environmental 228, 97–102 (2018).
[33] Y. Li, Z. Wang, T. Xia, H. Ju, K. Zhang, R. Long, Q. Xu, C. Wang, L. Song, J. Zhu, J. Jiang, and Y. Xiong, “Implementing Metal-to-Ligand Charge Transfer in Organic Semiconductor for Improved Visible-Near-Infrared Photocatalysis,” Advanced Materials 28, 6959–6965 (2016).
[34] Y. Kang, Y. Yang, L. C. Yin, X. Kang, G. Liu, and H. M. Cheng, “An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visible-Light-Responsive Range for Photocatalytic Hydrogen Generation,” Advanced Materials 27, 4572–4577 (2015).
[35] K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. Senker, and B. V. Lotsch, “Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution,” Journal of the American Chemical Society 136, 1730–1733 (2014).
[36] M. H. Levitt, D. Suter, and R. R. Ernst, “Spin dynamics and thermodynamics in solid-state NMR cross polarization,” The Journal of Chemical Physics 84, 4243–4255 (1986).
[37] D.-P. Wang, Y. Tang, and W.-D. Zhang, “A carbon nitride electrode for highly selective and sensitive determination of lead(II),” Microchimica Acta 180, 1303–1308 (2013).
[38] E. Z. Lee, Y. S. Jun, W. H. Hong, A. Thomas, and M. M. Jin, “Cubic mesoporous graphitic carbon(IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions,” Angewandte Chemie International Edition 49, 9706–9710 (2010).
[39] J. Tian, Q. Liu, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+,” Analytical Chemistry 85, 5595–5599 (2013).
[40] H. Xu, J. Yan, X. She, L. Xu, J. Xia, Y. Xu, Y. Song, L. Huang, and H. Li, “Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+,” Nanoscale 6, 1406–1415 (2014).
[41] A. Hatamie, F. Marahel, and A. Sharifat, “Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence,” Talanta 176, 518–525 (2018).
[42] Y. Wang, Y. Li, W. Ju, J. Wang, H. Yao, L. Zhang, J. Wang, and Z. Li, “Molten salt synthesis of water-dispersible polymeric carbon nitride nanoseaweeds and their application as luminescent probes,” Carbon 102, 477–486 (2016).
[43] J. Tian, Q. Liu, C. Ge, Z. Xing, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application,” Nanoscale 5, 8921 (2013).
[44] S. Cao, J. Low, J. Yu, and M. Jaroniec, “Polymeric Photocatalysts Based on Graphitic Carbon Nitride,” Advanced Materials 27, 2150–2176 (2015).
[45] L. Zhou, H. Zhang, H. Sun, S. Liu, M. O. Tade, S. Wang, and W. Jin, “Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review,” Catal. Sci. Technol. 6, 7002–7023 (2016).
[46] K. S. Lakhi, D.-H. Park, K. Al-Bahily, W. Cha, B. Viswanathan, J.-H. Choy, and A. Vinu, “Mesoporous carbon nitrides: synthesis, functionalization, and applications,” Chem. Soc. Rev. 46, 72–101 (2017).
[47] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nature Materials 8, 76–80 (2009).
[48] L. Xu, J. Xia, H. Xu, S. Yin, K. Wang, L. Huang, L. Wang, and H. Li, “Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance,” Journal of Power Sources 245, 866–874 (2014).
[49] Q. Yang, W. Wang, Y. Zhao, J. Zhu, Y. Zhu, and L. Wang, “Metal-free mesoporous carbon nitride catalyze the Friedel–Crafts reaction by activation of benzene,” RSC Adv. 5, 54978–54984 (2015).
[50] X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4 -Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light,” 131, 11658–11659 (2009).
[51] B. H. Min, M. B. Ansari, Y. H. Mo, and S. E. Park, “Mesoporous carbon nitride synthesized by nanocasting with urea/formaldehyde and metal-free catalytic oxidation of cyclic olefins,” Catalysis Today 204, 156–163 (2013).
[52] Y. Wang, H. Li, J. Yao, X. Wang, and M. Antonietti, “Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation,” Chem. Sci. 2, 446–450 (2011).
[53] Y. Wang, J. Yao, H. Li, D. Su, and M. Antonietti, “Highly selective hydrogenation of phenol and derivatives over a pd@carbon nitride catalyst in aqueous media,” Journal of the American Chemical Society 133, 2362–2365 (2011).
[54] J. Zhu, Y. Wei, W. Chen, Z. Zhao, and A. Thomas, “Graphitic carbon nitride as a metal-free catalyst for NO decomposition,” Chemical Communications 46, 6965 (2010).
[55] S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, “Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations,” Chem. Soc. Rev. 44, 2893–2939 (2015).
[56] Y. Li, J. Wang, Y. Yang, Y. Zhang, D. He, Q. An, and G. Cao, “Seed-induced growing various TiO2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light,” Journal of Hazardous Materials 292, 79–89 (2015).
[57] C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, and Q. Li, “In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation,” Nano Research 8, 1199–1209 (2015).
[58] D. Lu, G. Zhang, and Z. Wan, “Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction,” Applied Surface Science 358, 223–230 (2015).
[59] Z. Jiang, C. Zhu, W. Wan, K. Qian, and J. Xie, “Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production,” J. Mater. Chem. A 4, 1806–1818 (2016).
[60] M. Xu, L. Han, and S. Dong, “Facile Fabrication of Highly Efficient g-C3N4 /Ag2O Heterostructured Photocatalysts with Enhanced Visible-Light Photocatalytic Activity,” ACS Applied Materials & Interfaces 5, 12533–12540 (2013).
[61] Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, and X. Dong, “Hydrothermal Synthesis of Graphitic Carbon Nitride–Bi2WO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activities,” ACS Applied Materials & Interfaces 5, 7079–7085 (2013).
[62] M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu, and J. Shi, “Highly selective CO2 photoreduction to CO over g-C3N4 /Bi2WO6 composites under visible light,” J. Mater. Chem. A 3, 5189–5196 (2015).
[63] C. Li, S. Wang, T. Wang, Y. Wei, P. Zhang, and J. Gong, “Monoclinic porous BiVO4 networks decorated by discrete g-C3N4 nano-islands with tunable coverage for highly efficient photocatalysis,” Small 10, 2783–2790 (2014).
[64] X. She, H. Xu, H. Wang, J. Xia, Y. Song, J. Yan, Y. Xu, Q. Zhang, D. Du, and H. Li, “Controllable synthesis of CeO2 /g-C3N4 composites and their applications in the environment,” Dalton Trans. 44, 7021–7031 (2015).
[65] M. Li, L. Zhang, M. Wu, Y. Du, X. Fan, M. Wang, L. Zhang, Q. Kong, and J. Shi, “Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations,” Nano Energy 19, 145–155 (2016).
[66] P. Qiu, H. Chen, and F. Jiang, “Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity,” RSC Adv. 4, 39969–39977 (2014).
[67] J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, X. Wang, and L. Guo, “In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production,” Applied Catalysis B: Environmental 152–153, 335–341 (2014).
[68] X. Liu, A. Jin, Y. Jia, J. Jiang, N. Hu, and X. Chen, “Facile synthesis and enhanced visible-light photocatalytic activity of graphitic carbon nitride decorated with ultrafine Fe2O3 nanoparticles,” RSC Advances 5, 92033–92041 (2015).
[69] S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. Sen Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts,” Applied Catalysis B: Environmental 147, 940–946 (2014).
[70] H.-Y. Chen, L.-G. Qiu, J.-D. Xiao, S. Ye, X. Jiang, and Y.-P. Yuan, “Inorganic–organic hybrid NiO–g-C3N4 photocatalyst for efficient methylene blue degradation using visible light,” RSC Adv. 4, 22491–22496 (2014).
[71] Y. Zang, L. Li, X. Li, R. Lin, and G. Li, “Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity,” Chemical Engineering Journal 246, 277–286 (2014).
[72] Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, and W. Shi, “In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants,” Applied Catalysis B: Environmental 180, 663–673 (2016).
[73] T. Jayaraman, S. Arumugam Raja, A. Priya, M. Jagannathan, and M. Ashokkumar, “Synthesis of a visible-light active V2O5 –g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material,” New J. Chem. 39, 1367–1374 (2015).
[74] I. Aslam, C. Cao, M. Tanveer, W. S. Khan, M. Tahir, M. Abid, F. Idrees, F. K. Butt, Z. Ali, and N. Mahmood, “The synergistic effect between WO3 and g-C3N4 towards efficient visible-light-driven photocatalytic performance,” New J. Chem. 38, 5462–5469 (2014).
[75] K. ichi Katsumata, R. Motoyoshi, N. Matsushita, and K. Okada, “Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas,” Journal of Hazardous Materials 260, 475–482 (2013).
[76] K. Kailasam, A. Fischer, G. Zhang, J. Zhang, M. Schwarze, M. Schröder, X. Wang, R. Schomäcker, and A. Thomas, “Mesoporous Carbon Nitride-Tungsten Oxide Composites for Enhanced Photocatalytic Hydrogen Evolution,” ChemSusChem 8, 1404–1410 (2015).
[77] D. Chen, K. Wang, T. Ren, H. Ding, and Y. Zhu, “Synthesis and characterization of the ZnO/mpg-C3N4 heterojunction photocatalyst with enhanced visible light photoactivity,” Dalton Trans. 43, 13105–13114 (2014).
[78] W. Yu, D. Xu, and T. Peng, “Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism,” J. Mater. Chem. A 3, 19936–19947 (2015).
[79] L. Sun, X. Zhao, C.-J. Jia, Y. Zhou, X. Cheng, P. Li, L. Liu, and W. Fan, “Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies,” Journal of Materials Chemistry 22, 23428 (2012).
[80] J. Yu, K. Wang, W. Xiao, and B. Cheng, “Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts,” Physical Chemistry Chemical Physics 16, 11492 (2014).
[81] Y. Shiraishi, Y. Kofuji, S. Kanazawa, H. Sakamoto, S. Ichikawa, S. Tanaka, and T. Hirai, “Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light,” Chem. Commun. 50, 15255–15258 (2014).
[82] A. Indra, P. W. Menezes, K. Kailasam, D. Hollmann, M. Schröder, A. Thomas, A. Brückner, and M. Driess, “Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?,” Chem. Commun. 52, 104–107 (2016).
[83] L. Bi, D. Xu, L. Zhang, Y. Lin, D. Wang, and T. Xie, “Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending,” Phys. Chem. Chem. Phys. 17, 29899–29905 (2015).
[84] C. Wang, S. Cao, and W.-F. Fu, “A stable dual-functional system of visible-light-driven Ni(ii) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production,” Chemical Communications 49, 11251 (2013).
[85] F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, and Z. Wu, “An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification,” Environmental Science and Technology 49, 12432–12440 (2015).
[86] S. Bai, X. Wang, C. Hu, M. Xie, J. Jiang, and Y. Xiong, “Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis,” Chem. Commun. 50, 6094–6097 (2014).
[87] Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, and M. Huo, “Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst,” Applied Catalysis B: Environmental 142–143, 828–837 (2013).
[88] Y. Di, X. Wang, A. Thomas, and M. Antonietti, “Making Metal-Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light,” ChemCatChem 2, 834–838 (2010).
[89] S. Samanta, S. Martha, and K. Parida, “Facile synthesis of Au/g-C3N4 nanocomposites: An inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation,” ChemCatChem 6, 1453–1462 (2014).
[90] W.-J. Ong, L.-L. Tan, S.-P. Chai, and S.-T. Yong, “Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene–g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane,” Chem. Commun. 51, 858–861 (2015).
[91] W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong, and A. R. Mohamed, “Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/ g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane,” Nano Energy 13, 757–770 (2015).
[92] Z. Teng, H. Lv, C. Wang, H. Xue, H. Pang, and G. Wang, “Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization,” Carbon 113, 63–75 (2017).
[93] J. Oh, R. J. Yoo, S. Y. Kim, Y. J. Lee, D. W. Kim, and S. Park, “Oxidized Carbon Nitrides: Water-Dispersible, Atomically Thin Carbon Nitride-Based Nanodots and Their Performances as Bioimaging Probes,” Chemistry A European Journal 21, 6241–6246 (2015).
[94] J. Xu, L. Zhang, R. Shi, and Y. Zhu, “Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis,” Journal of Materials Chemistry A 1, 14766 (2013).
[95] S. Liu, D. Li, H. Sun, H. M. Ang, M. O. Tadé, and S. Wang, “Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis,” Journal of Colloid and Interface Science 468, 176–182 (2016).
[96] G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako, and J. Ye, “In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production,” Advanced Functional Materials 26, 6822–6829 (2016).
[97] D. J. Martin, K. Qiu, S. A. Shevlin, A. D. Handoko, X. Chen, Z. Guo, and J. Tang, “Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride,” Angewandte Chemie International Edition 53, 9240–9245 (2014).
[98] J. Hong, X. Xia, Y. Wang, and R. Xu, “Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light,” Journal of Materials Chemistry 22, 15006-15012 (2012).
[99] D. A. Erdogan, M. Sevim, E. Kısa, D. B. Emiroglu, M. Karatok, E. I. Vovk, M. Bjerring, Ü. Akbey, Ö. Metin, and E. Ozensoy, “Photocatalytic Activity of Mesoporous Graphitic Carbon Nitride (mpg-C3N4) Towards Organic Chromophores Under UV and VIS Light Illumination,” Topics in Catalysis 59, 1305–1318 (2016).
[100] J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Fu, M. Antonieta, and X. Wang, “Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization,” Angewandte Chemie International Edition 49, 441–444 (2010).
[101] M. Zhang and X. Wang, “Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution,” Energy & Environmental Science 7, 1902 (2014).
[102] L. Sun, W. Hong, J. Liu, M. Yang, W. Lin, G. Chen, D. Yu, and X. Chen, “Cross-Linked Graphitic Carbon Nitride with Photonic Crystal Structure for Efficient Visible-Light-Driven Photocatalysis,” ACS Applied Materials and Interfaces 9, 44503–44511 (2017).
[103] C. Yang, B. Wang, L. Zhang, L. Yin, and X. Wang, “Synthesis of Layered Carbonitrides from Biotic Molecules for Photoredox Transformations,” Angewandte Chemie International Edition 56, 6627–6631 (2017).
[104] Q. Cui, J. Xu, X. Wang, L. Li, M. Antonietti, and M. Shalom, “Phenyl-Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior,” Angewandte Chemie International Edition 55, 3672–3676 (2016).
[105] M. K. Bhunia, S. Melissen, M. R. Parida, P. Sarawade, J. M. Basset, D. H. Anjum, O. F. Mohammed, P. Sautet, T. Le Bahers, and K. Takanabe, “Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity,” Chemistry of Materials 2, 8237–8247 (2015).
[106] M. K. Bhunia, K. Yamauchi, and K. Takanabe, “Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution,” Angewandte Chemie International Edition 53, 11001–11005 (2014).
[107] S. Hu, X. Qu, J. Bai, P. Li, Q. Li, F. Wang, and L. Song, “Effect of Cu(I)–N Active Sites on the N2 Photofixation Ability over Flowerlike Copper-Doped g-C3N4 Prepared via a Novel Molten Salt-Assisted Microwave Process: The Experimental and Density Functional Theory Simulation,” ACS Sustainable Chemistry & Engineering 5, 6863–6872 (2017).
[108] K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, and B. V. Lotsch, “Triazine-based carbon nitrides for visible-light-driven hydrogen evolution,” Angewandte Chemie International Edition 52, 2435–2439 (2013).
[109] G. Zhang, G. Li, Z. A. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, and M. Antonietti, “Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity,” Angewandte Chemie International Edition 56, 13445–13449 (2017).
[110] Y. Fukasawa, K. Takanabe, A. Shimojima, M. Antonietti, K. Domen, and T. Okubo, “Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template,” Chemistry An Asian Journal 6, 103–109 (2011).
[111] X. H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, and X. Wang, “Condensed graphitic carbon nitride nanorods by nanoconfinement: Promotion of crystallinity on photocatalytic conversion,” Chemistry of Materials 23, 4344–4348 (2011).
[112] L. Tian, J. Li, F. Liang, J. Wang, S. Li, H. Zhang, and S. Zhang, “Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater,” Applied Catalysis B: Environmental 225, 307–313 (2018).
[113] P. Qiu, C. Xu, H. Chen, F. Jiang, X. Wang, R. Lu, and X. Zhang, “One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity,” Applied Catalysis B: Environmental 206, 319–327 (2017).
[114] L. J. Fang, X. L. Wang, J. J. Zhao, Y. H. Li, Y. L. Wang, X. L. Du, Z. F. He, H. D. Zeng, and H. G. Yang, “One-step fabrication of porous oxygen-doped g-C3N4 with feeble nitrogen vacancies for enhanced photocatalytic performance,” Chemical Communications 52, 14408–14411 (2016).
[115] M. Xu, G. He, Z. Li, F. He, F. Gao, Y. Su, L. Zhang, Z. Yang, and Y. Zhang, “A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states,” Nanoscale 6, 10307–10315 (2014).
[116] C. J. P. Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, “NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1. http://srdata.nist.gov/xps/Default.aspx,” NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 Accessed: 2017-12-20 (2017).
[117] S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P. M. Ajayan, “Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light,” Advanced Materials 25, 2452–2456 (2013).