| 研究生: |
蕭滋愛 Hsiao, Tzu-Ai |
|---|---|
| 論文名稱: |
鋼鐵冶煉製程細小第二相粒子分佈之水模研究 Study of Distribution of Fine Second-phase Particles in Steel Making Process by Water Model |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 共同指導教授: |
李世欽
Lee, Shih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 超級鋼 、第二相粒子 、水模 、濁度 、接觸角 |
| 外文關鍵詞: | super steel, second-phase particle, water model, turbidity, contact angle |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超級鋼的基本特徵為超細晶、高潔淨及高均勻性。文獻指出:加入一定體積分率的細小第二相粒子,可有效提高鋼材綜合力學性能並細化晶粒。其中,第二相粒子扮演阻礙晶粒成長的重要角色,因此為了達到晶粒細化的均勻性,第二相粒子須在鋼液裡能均勻分佈。
本研究採用水模物理模型來探討第二相粒子在溶液中的分佈情形。為了得知粒子在溶液中的分佈情況,利用色度濁度儀來量測粒子濃度。藉由水模內各處的粒子濃度分佈隨時間變化的情形,評估粒子達到均勻混合所需的時間。同時也探討將不同粒徑的粒子加入不同濃度的乙醇與丙酮溶液時,粒徑大小和粒子與溶液間的潤濕性對均混時間以及粒子上浮率的影響。
研究結果顯示,粒子在溶液中的均混行為可藉由量測溶液中的濁度來加以判斷。在相同操作條件下,粒子粒徑大小對均混時間並無太大影響;粒子密度和溶液密度越相近時,均混時間越短;粒子與溶液接觸角較小時,均混時間較短且粒子上浮率也較低。顯示溶液和粒子潤濕性較高時,除了粒子較易被溶液帶開、分散較快外,粒子也較不容易上浮。因此,粒子與溶液間的潤濕性對均混時間的影響明顯大於粒子粒徑大小對均混時間的影響。
關鍵字:超級鋼、第二相粒子、水模、濁度、接觸角
Ultra-fine grains, high cleanliness and homogeneity are the basic characteristics of super steel. According to the former researches, adding the second phase fine particles at a specified volume fraction, could efficiently improve the mechanic property of steel and refine its grain. The second phase particles played an important role as the hindrance of grain growth. In order to achieve the homogeneity of grain refinement, the second phase particles should be uniformly distributed in the molten steel
In this study, a physical model was constructed to investigate the distribution of second phase particles in a solution. The concentrations of the second phase particles were measured by using Turbidity Meter to know the distribution of particles in a solution. By analyzing the particle concentration distribution with time in our model, the mixing time could be obtained. In addition, the influences of the different particle sizes and the wettability between particle and solution on the mixing time and the floating ratio for particles were evaluated by compared various particle size and solution concentration.
The results showed that particles distribution in a solution can be decided by measuring the turbidity of the solution. For the same operation conditions, particle size has less influence on the mixing time. Besides, as the density of solution was closed to particle, the mixing time would be decreased. While the contact angle between particle and solution was smaller, the mixing time would be shorten and the floating ratio of particle would also be reduced. From above, the wettability between particles and solution has more influences to the mixing time than particle sizes.
Key words:Super steel, Second-phase particle, Water model, Turbidity, Contact angle
1.張貴鋒, 張建勛, “日本關於超細晶粒鋼製備與銲接新工藝的研究進展”, 材料導報第19卷第9期, 2005年9月.
2.王國承, 王鐵明, 尚德禮, 方克明, “超細第二相粒子強化鋼鐵材料的進展”,鋼鐵研究學報第19卷第6期, 2007年6月.
3.Masayoshi Hasegawa, Kazuhiko Takeshita, “Strengthening of Steel by the Method of Spraying Oxide Particles into Molten Steel Stream”, Metallurgical Transactions B, Vol. 9B, 1978, pp.383-388.
4.屈朝霞, 田志凌, 何長紅, 張曉牧, 楊柏, 曹能, “超細晶粒鋼及其焊接性”, 鋼鐵第35卷第2期, 2000年.
5.張西鋒, 袁守謙, 魏穎娟, “超細晶粒鋼的製備原理及技術”, 鋼鐵研究學報第20卷第4期, 2008年4月.
6.J. M. Gregg, H. K. D. H. Bhadeshia, “Solid-state nucleation of acicular ferrite on minerals added to molten steel”, Acta materialia, Vol. 45, No. 2, 1997, pp.739-748.
7.雷毅, 劉志義, 李海, “低碳型鋼中添加ZrC粒子獲得超細晶粒的研究”, 鋼鐵第37卷第8期, 2002年.
8.雷毅, 劉志義, 李海, “20Mn2鋼中添加ZrC粒子獲得超細晶粒的研究”, 兵器材料科學與工程第26卷第3期, 2003年5月.
9.雷毅, 劉志義, 李海, “低碳鋼中添加ZrO2粒子獲得超細晶粒的研究”, 兵器材料科學與工程第27卷第2期, 2004年3月.
10.K. Ogawa, T. Makino, H. Matsumoto, T. Onoye, K. Narita, “Dispersion of Particles in a Powder Injection Process”, Transactions ISIJ, Vol. 25, No. 12, 1985, pp.1220-1226.
11.臧紅霞, “接觸角的測量方法與發展”, 福建分析測試第15卷第2期, 2006年.
12.儲鴻, 崔正剛, “粉體接觸角的測定方法”, 化工時刊第18卷第10期, 2004年10月.
13.Y. Pan, D. Guo, J.Ma, W. Wang, F. Tang, C. Li, “Mixing time and fluid flow pattern of composition adjustment by sealed argon bubbling with ladles of large height/diameter ratio”, ISIJ Internal, Vol. 34, No. 10, 1994, pp.794-801
14.G. G. K. Murthy, S. P. Mehrotra, A. Ghosh, . “Experimental investigation of mixing phenomena in a gas stirred liquid bath”, Metallurgical Transactions B, Vol. 19B, 1988, pp.839-850.
15.S. B. Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, “Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite”, Materials Processing Technology, Vol. 171, 2006, pp.268-273.
16.N. EI-Kaddah, K. E. Chang, “On the dispersion of SiC-Al slurries on rotating flows”, Materials Science and Engineering, Vol. A144, 1991, pp.221-227.
17.T. Sukawa, M. Iguchi, “Promotion of Uniform Dispersion of Fine Particles into a Mechanically Agitated Steel Bath”, ISIJ International, Vol. 45, No. 8, 2005, pp.1145-1150.
18.J. Hsahim, L. Looney, M. S. J. Hashmi, “Particle distribution in cast metal matrix composites-Part I”, Materials Processing Technology, Vol. 123, 2002, pp.251-257.
19.D. S. Sarma, A. V. Karasev, P. G. Jönsson, “On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels”, ISIJ Internal, Vol. 49, No. 7, 2009, pp.1063-1074.
20.廖建國, “日本鋼中夾雜評價技術的最新動向(上)(下)”, 中國鋼鐵業第二期、第三期, 2005年.
21.薛正良, 李正邦, 張家雯, “鋼的純淨度的評價方法”, 鋼鐵研究學報第15卷第1期, 2003年2月.
22.N. Eustathopoulos, M. G. Nicholas, B. Drevet, “Wettability at high temperatures”, Pergamon, United Kingdom, 1999.
23.G. G. Krishna, J. F. Elliott, “Definition and Determination of Mixing Time in Gas Agitated Liquid Baths”, ISIJ International, Vol. 32, No. 2, 1992, pp.190-195.
校內:2015-08-13公開