| 研究生: |
古鎮豪 Ku, Chen-Hao |
|---|---|
| 論文名稱: |
以化學浴沉積法成長氧化鋅奈米線-奈米粒複合薄膜與其於染料敏化太陽能電池之應用 Chemical Bath Deposition of ZnO Nanowire-nanoparticle Composite Electrodes for Use in Dye-sensitized Solar Cells |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 化學浴沉積法 、氧化鋅奈米線-奈米粒複合薄膜 、染料敏化太陽能電池 |
| 外文關鍵詞: | chemical bath deposition, ZnO nanowire-nanoparticle composite film, dye-sensitized solar cells |
| 相關次數: | 點閱:84 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃利用一簡單的溼式化學方法(wet-chemcial route),即首先利用水溶液化學浴沉積法(chemical bath deposition,CBD),於FTO (fluorine-doped SnO2)基板上成長ZnO奈米線陣列(nanowire array),之後再利用另一無鹼(base-free)化學浴沉積法,於奈米線陣列之表面異質成核與成長LBZA(layered basic zinc acetate)/ZnO奈米粒(nanoparticle),以形成一同時具有良好電子傳輸特性與高表面積之奈米線-奈米粒複合薄膜。除此,藉由調變成長奈米粒之時間,也可輕易成長出三維(three-dimensional,3-D)的奈米線-奈米片(nanosheet)網狀結構、緻密的奈米線-奈米粒複合薄膜與表面含有花狀粒子的奈米線-奈米粒複合薄膜等不同奈米粒含量與表面型態之複合薄膜。根據X光繞射(X-ray Diffraction,XRD)與陰極發光(cathodoluminescence,CL)等分析,顯示複合薄膜內LBZA含量與ZnO缺陷濃度會隨成長奈米粒之時間增加而增加,且ZnO(002)繞射峰與紫外光發射頻帶之波峰位置也會隨奈米粒之成長時間不同而有所變化。此外,當奈米粒之成長時間超過16小時,複合薄膜內也會開始出現裂痕。吾人認為上述之現象乃由於氫氧基醋酸鋅錯化合物(zinc hydroxy-acetate complexes)之水解並不完全,導致所形成之ZnO奈米粒,c軸之晶格常數(lattice constant)會有所差異。根據高解析穿透式電子顯微鏡(high-resolution transmission electron microscope,HRTEM)之分析,證實ZnO奈米線與奈米粒間並沒有磊晶(epitaxial)之關係,因而吾人認為本研究能成功成長出奈米線-奈米粒複合薄膜之關鍵,在於利用無鹼化學浴沉積法,使LBZA會先異質成核於奈米線表面。
本研究也證實利用ZnO奈米線-LBZA/ZnO奈米粒複合薄膜作為光陽極,可大幅提升ZnO奈米線陣列染料敏化太陽能電池之效率。根據交流阻抗分析(Impedance analyses),顯示ZnO奈米線-LBZA/ZnO奈米粒複合薄膜陽極之有效電子擴散係數(effective diffusion coefficient)介於ZnO奈米線陣列與TiO2奈米粒薄膜陽極之間。而ZnO奈米線-LBZA/ZnO奈米粒複合薄膜染料敏化太陽能電池之高效率,主要就是因為複合薄膜內同時含有奈米粒與單晶奈米線陣列,造成在大幅增加光利用效率的同時,卻未損失太多的電子傳輸效率。除了複合薄膜內奈米粒之含量,ZnO奈米線-LBZA/ZnO奈米粒複合薄膜染料敏化太陽能電池之效率還受複合薄膜厚度、複合薄膜內LBZA含量、ZnO缺陷濃度含量與裂痕含量等因素所影響。除此,本研究也發現複合薄膜內之LBZA含量,會受奈米粒成長時間與複合薄膜之退火處理條件所影響,且此LBZA含量在複合薄膜內之電子傳輸上乃扮演極為關鍵之角色。
ZnO nanowire (NW)-layered basic zinc acetate (LBZA)/ZnO nanoparticle (NP) composite films with different NP occupying extents have been synthesized using a simple wet-chemical route, i.e., aligned ZnO NW array first formed by an aqueous chemical bath deposition (CBD) and then heterogeneous nucleation and growth of LBZA/ZnO NPs on the surface of ZnO NWs by another base-free CBD. The features of the composites from three-dimensional (3-D) NW-nanosheet (NS) networks, dense NW-NP composite film to NW-NP composite film with flower-like particles are able to be obtained easily by varying the NP growth period. X-ray diffraction (XRD) and cathodoluminescence (CL) analyses indicate that the LBZA fraction and the ZnO defect concentration in the composite film are increased with the NP growth period in the base-free chemical bath solution. Shifts of the ZnO (002) diffraction peak and UV emission peak with the NP growth period are observed at the series of composite films as well. Moreover, cracks in the composites are also observed after NP growth for more than 16 h. We suggest those are attributed to the slight dissimilarity of the c-axis lattice constants of the ZnO NPs formed from a deficient hydrolysis of zinc hydroxy-acetate complexes. HRTEM analysis indicate that there is no epitaxial relationship between the ZnO NW and ZnO NPs, suggesting that heterogeneous nucleation of LBZA structure on the surface of the ZnO NWs is crucial for the formation of the NW-NP composite using the base-free route.
A significant improvement of the efficiency of the ZnO NW dye-sensitized solar cell (DSSC) has been also achieved using the ZnO NW-LBZA/ZnO NP composite film as photoanode. Impedance analyses of the electron transports in DSSCs reveal that the effective diffusion coefficient of an electron in the ZnO NW-LBZA/ZnO NP composite anode falls between those in the ZnO NW and TiO2 NP anodes. The superior performance of the ZnO NW-LBZA/ZnO NP composite DSSC to the ZnO NW cell is mainly ascribed to the enrichment of the light harvesting without significantly sacrificing the electron transport efficiency. In addition to the extent of NP occupying, the overall efficency of the ZnO NW-LBZA/ZnO NP composite DSSC is also influenced by the thickness of composite, the LBZA fraction, the defect concentration in ZnO and the cracks within the composite. The faction of LBZA in the composite film, which is affected by NP growth period and post-annealing conditions, is found to play a crucial role for electron transport through the composite as well.
參考文獻
[1] 法蘭茲‧阿爾特(F. Alt)著,王琪,唐小莉,與陳仁德等人譯,太陽電力公司:新能源‧新就業機會(新自然主義股份有限公司, 2005)
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys. 25, 676 (1954).
[3] M. A. Green, K. Emery, D. L. King et al., Solar cell efficiency tables (version 29), Prog. Photovoltaics 15, 35 (2007).
[4] J. Nelson, The physics of solar cells (Imperial College Press, 2003).
[5] 王智弘,太陽光電市場醞釀重整,新電子, Vol. 254, pp. 36 (2007).
[6] Handbook of photovoltaic science and engineering, edited by A. Luque and S. Hegedus (John Wiley & Sons Ltd., 2003).
[7] Thin-film solar cells: next generation photovoltaics and its applications, edited by Y. Hamakawa (Springer-Verlag Berlin Heidelberg, 2004).
[8] Solar cells: materials, manufacture and operation, edited by T. Markvart and L. Castaner (Elsevier Ltd., 2005).
[9] K. Zweibel, annual report (Thin film partnership, NREL, 2005).
[10] Semiconductor photochemistry and photophysics, edited by V. Ramamurthy and K. S. Schanze (Marcel Dekker, Inc., 2003).
[11] B. Oregan and M. Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737 (1991).
[12] M. K. Nazeeruddin, A. Kay, I. Rodicio et al., Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)Ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc. 115, 6382 (1993).
[13] G. Smestad, C. Bignozzi, and R. Argazzi, Testing of dye-sensitized TiO2 solar-cells 1: Experimental photocurrent output and conversion efficiencies, Sol. Energy Mater. Sol. Cells 32, 259 (1994).
[14] J. Halme, Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests, thesis (Helsinki University of Technology, 2002).
[15] J. E. Trancik and K. Zweibel, Technology choice and cost reduction potential of photovoltaics, The 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) (Waikoloa, Hawaii, May 7-12, 2006).
[16] A. J. Frank, N. Kopidakis, and J. van de Lagemaat, Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties, Coord. Chem. Rev. 248, 1165 (2004).
[17] A. Solbrand, H. Lindstrom, H. Rensmo et al., Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents, J. Phys. Chem. B 101, 2514 (1997).
[18] N. Kopidakis, E. A. Schiff, N. G. Park et al., Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2, J. Phys. Chem. B 104, 3930 (2000).
[19] S. Nakade, W. Kubo, Y. Saito et al., Influence of measurement conditions on electron diffusion in nanoporous TiO2 films: Effects of bias light and dye adsorption, J. Phys. Chem. B 107, 14244 (2003).
[20] H. G. Agrell, G. Boschloo, and A. Hagfeldt, Conductivity studies of nanostructured TiO2 films permeated with electrolyte, J. Phys. Chem. B 108, 12388 (2004).
[21] L. Forro, O. Chauvet, D. Emin et al., High-mobility N-type charge-carriers in large single-crystals of anatase(TiO2), J. Appl. Phys. 75, 633 (1994).
[22] E. Hendry, M. Koeberg, B. O'Regan et al., Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy, Nano Lett. 6, 755 (2006).
[23] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Nanobelts of semiconducting oxides, Science 291, 1947 (2001).
[24] Y. C. Kong, D. P. Yu, B. Zhang et al., Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett. 78, 407 (2001).
[25] P. D. Yang, H. Q. Yan, S. Mao et al., Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater. 12, 323 (2002).
[26] J. J. Wu and S. C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Adv. Mater. 14, 215 (2002).
[27] J. Y. Lao, J. Y. Huang, D. Z. Wang et al., ZnO nanobridges and nanonails, Nano Lett. 3, 235 (2003).
[28] V. A. L. Roy, A. B. Djurisic, W. K. Chan et al., Luminescent and structural properties of ZnO nanorods prepared under different conditions, Appl. Phys. Lett. 83, 141 (2003).
[29] Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett. 396, 21 (2004).
[30] C. Y. Geng, Y. Jiang, Y. Yao et al., Well-aligned ZnO nanowire arrays fabricated on silicon substrates, Adv. Funct. Mater. 14, 589 (2004).
[31] K. Govender, D. S. Boyle, P. O'Brien et al., Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition, Adv. Mater. 14, 1221 (2002).
[32] S. Yamabi and H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions, J. Mater. Chem. 12, 3773 (2002).
[33] J. H. Choy, E. S. Jang, J. H. Won et al., Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser, Adv. Mater. 15, 1911 (2003).
[34] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater. 15, 464 (2003).
[35] Z. R. R. Tian, J. A. Voigt, J. Liu et al., Complex and oriented ZnO nanostructures, Nat. Mater. 2, 821 (2003).
[36] K. Govender, D. S. Boyle, P. B. Kenway et al., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, J. Mater. Chem. 14, 2575 (2004).
[37] Q. C. Li, V. Kumar, Y. Li et al., Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater. 17, 1001 (2005).
[38] Y. Sun, G. M. Fuge, N. A. Fox et al., Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film, Adv. Mater. 17, 2477 (2005).
[39] C. H. Ku and J. J. Wu, Aqueous solution route to high-aspect-ratio zinc oxide nanostructures on indium tin oxide substrates, J. Phys. Chem. B 110, 12981 (2006).
[40] J. B. Baxter and E. S. Aydil, Nanowire-based dye-sensitized solar cells, Appl. Phys. Lett. 86, 053114 (2005).
[41] M. Law, L. E. Greene, J. C. Johnson et al., Nanowire dye-sensitized solar cells, Nat. Mater. 4, 455 (2005).
[42] M. Guo, P. Diao, X. D. Wang et al., The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films, J. Solid State Chem. 178, 3210 (2005).
[43] J. B. Baxter and E. S. Aydil, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires, Sol. Energy Mater. Sol. Cells 90, 607 (2006).
[44] J. B. Baxter, A. M. Walker, K. van Ommering et al., Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells, Nanotechnology 17, S304 (2006).
[45] A. Du Pasquier, H. H. Chen, and Y. C. Lu, Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays, Appl. Phys. Lett. 89, 3 (2006).
[46] B. Pradhan, S. K. Batabyal, and A. J. Pal, Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells, Solar Energy Materials and Solar Cells 91, 769 (2007).
[47] J. J. Wu, G. R. Chen, H. H. Yang et al., Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells, Appl. Phys. Lett. 90, 3 (2007).
[48] J. B. Baxter and C. A. Schmuttenmaer, Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy, J. Phys. Chem. B 110, 25229 (2006).
[49] Z. Y. Zhang, C. H. Jin, X. L. Liang et al., Current-voltage characteristics and parameter retrieval of semiconducting nanowires, Appl. Phys. Lett. 88, 3 (2006).
[50] T. Dittrich, E. A. Lebedev, and J. Weidmann, Electron drift mobility in porous TiO2 (anatase) (vol 165, pg R5, 1998), Phys. Status Solidi A-Appl. Res. 167, R9 (1998).
[51] T. Dittrich, Porous TiO2: Electron transport and application to dye sensitized injection solar cells, Phys. Status Solidi A-Appl. Res. 182, 447 (2000).
[52] J. B. Asbury, Y. Q. Wang, and T. Q. Lian, Multiple-exponential electron injection in Ru(dcbpy)(2)(SCN)(2) sensitized ZnO nanocrystalline thin films, J. Phys. Chem. B 103, 6643 (1999).
[53] A. Furube, R. Katoh, K. Hara et al., Ultrafast stepwise electron injection from photoexcited Ru-complex into nanocrystalline ZnO film via intermediates at the surface, J. Phys. Chem. B 107, 4162 (2003).
[54] N. A. Anderson, X. Ai, and T. Q. Lian, Electron injection dynamics from Ru polypyridyl complexes to ZnO nanocrystalline thin films, J. Phys. Chem. B 107, 14414 (2003).
[55] N. A. Anderson and T. Lian, Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films, Coord. Chem. Rev. 248, 1231 (2004).
[56] R. Katoh, A. Furube, A. V. Barzykin et al., Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors, Coord. Chem. Rev. 248, 1195 (2004).
[57] A. Furube, M. Murai, S. Watanabe et al., Near-IR transient absorption study on ultrafast electron-injection dynamics from a Ru-complex dye into nanocrystalline In2O3 thin films: Comparison with SnO2,ZnO, and TiO2 films, J. Photochem. Photobiol. A-Chem. 182, 273 (2006).
[58] J. B. Asbury, R. J. Ellingson, H. N. Ghosh et al., Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)(2)(NCS)(2) in solution and on nanocrystalline TiO2 and Al2O3 thin films, J. Phys. Chem. B 103, 3110 (1999).
[59] J. B. Asbury, E. Hao, Y. Q. Wang et al., Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films, J. Phys. Chem. B 105, 4545 (2001).
[60] G. Benko, J. Kallioinen, J. E. I. Korppi-Tommola et al., Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states, J. Am. Chem. Soc. 124, 489 (2002).
[61] K. Keis, J. Lindgren, S. E. Lindquist et al., Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes, Langmuir 16, 4688 (2000).
[62] C. Bauer, G. Boschloo, E. Mukhtar et al., Electron injection and recombination in Ru(dcbpy)(2)(NCS)(2) sensitized nanostructured ZnO, J. Phys. Chem. B 105, 5585 (2001).
[63] K. Westermark, H. Rensmo, H. Siegbahn et al., PES studies of Ru(dcbpyH(2))(2)(NCS)(2) adsorption on nanostructured ZnO for solar cell applications, J. Phys. Chem. B 106, 10102 (2002).
[64] K. Keis, C. Bauer, G. Boschloo et al., Nanostructured ZnO electrodes for dye-sensitized solar cell applications, J. Photochem. Photobiol. A-Chem. 148, 57 (2002).
[65] K. Keis, E. Magnusson, H. Lindstrom et al., A 5% efficient photo electrochemical solar cell based on nanostructured ZnO electrodes, Sol. Energy Mater. Sol. Cells 73, 51 (2002).
[66] R. Katoh, A. Furube, K. Hara et al., Efficiencies of electron injection from excited sensitizer dyes to nanocrystalline ZnO films as studied by near-IR optical absorption of injected electrons, J. Phys. Chem. B 106, 12957 (2002).
[67] H. Horiuchi, R. Katoh, K. Hara et al., Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation, J. Phys. Chem. B 107, 2570 (2003).
[68] R. Katoh, A. Furube, Y. Tamaki et al., Microscopic imaging of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film, J. Photochem. Photobiol. A-Chem. 166, 69 (2004).
[69] K. Tennakone, P. K. M. Bandaranayake, P. V. V. Jayaweera et al., Dye-sensitized composite semiconductor nanostructures, Physica E 14, 190 (2002).
[70] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat et al., Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 107, 11307 (2003).
[71] G. Kumara, K. Tennakone, I. R. M. Kottegoda et al., Efficient dye-sensitize photoelectrochemical cells made from nanocrystalline tin(IV) oxide-zinc oxide composite films, Semicond. Sci. Technol. 18, 312 (2003).
[72] R. Katoh, A. Furube, T. Yoshihara et al., Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films, J. Phys. Chem. B 108, 4818 (2004).
[73] A. N. M. Green, E. Palomares, S. A. Haque et al., Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films, J. Phys. Chem. B 109, 12525 (2005).
[74] J. A. Anta, F. Casanueva, and G. Oskam, A numerical model for charge transport and recombination in dye-sensitized solar cells, J. Phys. Chem. B 110, 5372 (2006).
[75] S. O. Kasap, Optoelectronics and photonics: principles and practices (Prentice-Hall, Inc., 2001).
[76] C. J. Barbe, F. Arendse, P. Comte et al., Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc. 80, 3157 (1997).
[77] K. Kalyanasundaram and M. Gratzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev. 177, 347 (1998).
[78] K. S. Finnie, J. R. Bartlett, and J. L. Woolfrey, Vibrational spectroscopic study of the coordination of (2,2'-bipyridyl-4,4'- dicarboxylic acid)ruthenium(II) complexes to the surface of nanocrystalline titania, Langmuir 14, 2744 (1998).
[79] M. K. Nazeeruddin, M. Amirnasr, P. Comte et al., Adsorption studies of counterions carried by the sensitizer cis-dithiocyanato(2,2'- bipyridyl-4,4'-dicarboxylate) ruthenium(II) on nanocrystaline TiO2 films, Langmuir 16, 8525 (2000).
[80] A. Hagfeldt and M. Gratzel, Molecular photovoltaics, Accounts Chem. Res. 33, 269 (2000).
[81] S. Nakade, T. Kanzaki, W. Kubo et al., Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3(-) redox couple, J. Phys. Chem. B 109, 3480 (2005).
[82] S. A. Haque, Y. Tachibana, D. R. Klug et al., Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias, J. Phys. Chem. B 102, 1745 (1998).
[83] D. Kuciauskas, M. S. Freund, H. B. Gray et al., Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes, J. Phys. Chem. B 105, 392 (2001).
[84] A. Hagfeldt and M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 95, 49 (1995).
[85] S. Y. Huang, G. Schlichthorl, A. J. Nozik et al., Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 101, 2576 (1997).
[86] J. S. Salafsky, W. H. Lubberhuizen, E. van Faassen et al., Charge dynamics following dye photoinjection into a TiO2 nanocrystalline network, J. Phys. Chem. B 102, 766 (1998).
[87] J. van de Lagemaat and A. J. Frank, Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies, J. Phys. Chem. B 105, 11194 (2001).
[88] A. C. Fisher, L. M. Peter, E. A. Ponomarev et al., Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells, J. Phys. Chem. B 104, 949 (2000).
[89] J. Nelson and R. E. Chandler, Random walk models of charge transfer and transport in dye sensitized systems, Coord. Chem. Rev. 248, 1181 (2004).
[90] L. M. Peter, N. W. Duffy, R. L. Wang et al., Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells, J. Electroanal. Chem. 524, 127 (2002).
[91] P. V. Kamat, I. Bedja, S. Hotchandani et al., Photosensitization of nanocrystalline semiconductor films. Modulation of electron transfer between excited ruthenium complex and SnO2 nanocrystallites with an externally applied bias, J. Phys. Chem. 100, 4900 (1996).
[92] H. Rensmo, K. Keis, H. Lindstrom et al., High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes, J. Phys. Chem. B 101, 2598 (1997).
[93] K. Sayama, H. Sugihara, and H. Arakawa, Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye, Chem. Mater. 10, 3825 (1998).
[94] K. Hara, T. Horiguchi, T. Kinoshita et al., Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energy Mater. Sol. Cells 64, 115 (2000).
[95] F. Lenzmann, J. Krueger, S. Burnside et al., Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: Indication for electron injection from higher excited dye states, J. Phys. Chem. B 105, 6347 (2001).
[96] K. Hara, K. Sayama, Y. Ohga et al., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chem. Commun., 569 (2001).
[97] K. Hara, H. Sugihara, Y. Tachibana et al., Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(II) phenanthroline complex photosensitizers, Langmuir 17, 5992 (2001).
[98] K. Hara, T. Nishikawa, K. Sayama et al., Novel and efficient organic liquid electrolytes for dye-sensitized solar cells based on a Ru(II) terpyridyl complex photosensitizer, Chem. Lett. 32, 1014 (2003).
[99] K. Hara, M. Kurashige, S. Ito et al., Novel polyene dyes for highly efficient dye-sensitized solar cells, Chem. Commun., 252 (2003).
[100] K. J. Jiang, N. Masaki, J. B. Xia et al., A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells, Chem. Commun., 2460 (2006).
[101] S. L. Li, K. J. Jiang, K. F. Shao et al., Novel organic dyes for efficient dye-sensitized solar cells, Chem. Commun., 2792 (2006).
[102] F. Cao, G. Oskam, and P. C. Searson, A solid-state dye-sensitized photoelectrochemical cell, J. Phys. Chem. 99, 17071 (1995).
[103] U. Bach, D. Lupo, P. Comte et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature 395, 583 (1998).
[104] H. Matsumoto, T. Matsuda, T. Tsuda et al., The application of room temperature molten salt with low viscosity to the electrolyte for dye-sensitized solar cell, Chem. Lett., 26 (2001).
[105] W. Kubo, T. Kitamura, K. Hanabusa et al., Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem. Commun., 374 (2002).
[106] P. Wang, S. M. Zakeeruddin, J. E. Moser et al., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat. Mater. 2, 402 (2003).
[107] B. Enright and D. Fitzmaurice, Spectroscopic determination of electron and mole effective masses in a nanocrystalline semiconductor film, J. Phys. Chem. 100, 1027 (1996).
[108] G. Sanon, R. Rup, and A. Mansingh, Band-gap narrowing and band-structure in degenerate tin oxide (SnO2) films, Phys. Rev. B 44, 5672 (1991).
[109] M. Matsumura, K. Mitsuda, N. Yoshizawa et al., Photocurrents in the ZnO and TiO2 photoelectrochemical cells sensitized by xanthene dyes and tetraphenylporphines-effect of subsitution on the electron injection processes, Bull. Chem. Soc. Jpn. 54, 692 (1981).
[110] G. Hodes, Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition, Phys. Chem. Chem. Phys. 9, 2181 (2007).
[111] J.-P. Jolivet, M. Henry, and J. Livage, Metal oxide chemistry and synthesis: from solution to solid state (John Wiley & Sons, Ltd., 2000).
[112] M. Izaki and J. Katayama, Characterization of boron-incorporated zinc oxide film chemically prepared from an aqueous solution, J. Electrochem. Soc. 147, 210 (2000).
[113] M. Izaki and T. Omi, Transparent zinc oxide films chemically prepared from aqueous solution, J. Electrochem. Soc. 144, L3 (1997).
[114] K. Ito and K. Nakamura, Preparation of ZnO thin films using the flowing liquid film method, Thin Solid Films 286, 35 (1996).
[115] P. Obrien, T. Saeed, and J. Knowles, Speciation and the nature of ZnO thin films from chemical bath deposition, J. Mater. Chem. 6, 1135 (1996).
[116] L. Vayssieres, K. Keis, S. E. Lindquist et al., Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, J. Phys. Chem. B 105, 3350 (2001).
[117] D. Raviendra and J. K. Sharma, Electroless deposition of cadmiumm stannate, zinc-oxide, and aluminum-doped zinc-oxide films, J. Appl. Phys. 58, 838 (1985).
[118] N. Saito, H. Haneda, W. S. Seo et al., Selective deposition of ZnF(OH) on self-assembled monolayers in Zn-NH4F aqueous solutions for micropatterning of zinc oxide, Langmuir 17, 1461 (2001).
[119] K. Kakiuchi, E. Hosono, T. Kimura et al., Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions, J. Sol-Gel Sci. Technol. 39, 63 (2006).
[120] E. Hosono, S. Fujihara, T. Kimura et al., Non-basic solution routes to prepare ZnO nanoparticles, J. Sol-Gel Sci. Technol. 29, 71 (2004).
[121] E. Hosono, S. Fujihara, T. Kimura et al., Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films, J. Colloid Interface Sci. 272, 391 (2004).
[122] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,碩士論文 (國立成功大學, 2006).
[123] 汪建明, 材料分析 (中國材料科學學會, 2001).
[124] U. Ozgur, Y. I. Alivov, C. Liu et al., A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 103 (2005).
[125] A. B. Djurisic and Y. H. Leung, Optical properties of ZnO nanostructures, Small 2, 944 (2006).
[126] H. Morioka, H. Tagaya, M. Karasu et al., Effects of zinc on the new preparation method of hydroxy double salts, Inorg. Chem. 38, 4211 (1999).
[127] R. Q. Song, A. W. Xu, B. Deng et al., From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts, Adv. Funct. Mater. 17, 296 (2007).
[128] L. Poul, N. Jouini, and F. Fievet, Layered hydroxide metal acetates (metal = zinc, cobalt, and nickel): Elaboration via hydrolysis in polyol medium and comparative study, Chem. Mater. 12, 3123 (2000).
[129] U. Muller, Inorganic structural chemistry (John Wiley & Sons Ltd., 1993).
[130] K. Hara, T. Horiguchi, T. Kinoshita et al., Highly efficient photon-to-electron conversion of mercurochrome-sensitized nanoporous ZnO solar cells, Chem. Lett., 316 (2000).
[131] J. van de Lagemaat, N. G. Park, and A. J. Frank, Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques, J. Phys. Chem. B 104, 2044 (2000).
[132] E. Palomares, J. N. Clifford, S. A. Haque et al., Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc. 125, 475 (2003).
[133] H. S. Jung, J. K. Lee, M. Nastasi et al., Preparation of nanoporous MgO-Coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells, Langmuir 21, 10332 (2005).
[134] J. H. Yum, S. Nakade, D. Y. Kim et al., Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides, J. Phys. Chem. B 110, 3215 (2006).
[135] S. Lee, J. Y. Kim, K. S. Hong et al., Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode, Sol. Energy Mater. Sol. Cells 90, 2405 (2006).
[136] 陳冠仁,利用交流阻抗法研究新穎色素增感太陽能電池之電子傳輸性質,碩士論文 (國立成功大學, 2007).
[137] C.-H. Ku and J.-J. Wu, Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells, Appl. Phys. Lett. 91, 093117 (2007).
[138] J. Bisquert, Theory of the impedance of electron diffusion and recombination in a thin layer, J. Phys. Chem. B 106, 325 (2002).
[139] M. Adachi, M. Sakamoto, J. T. Jiu et al., Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, J. Phys. Chem. B 110, 13872 (2006).
[140] L. M. Peter and K. G. U. Wijayantha, Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells, Electrochem. Commun. 1, 576 (1999).
[141] B. van der Zanden and A. Goossens, The nature of electron migration in dye-sensitized nanostructured TiO2, J. Phys. Chem. B 104, 7171 (2000).
[142] S. Nakade, Y. Saito, W. Kubo et al., Enhancement of electron transport in nano-porous TiO2 electrodes by dye adsorption, Electrochem. Commun. 5, 804 (2003).
[143] K. Kakiuchi, E. Hosono, and S. Fujihara, Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719, J. Photochem. Photobiol. A-Chem. 179, 81 (2006).
[144] M. Law, L. E. Greene, A. Radenovic et al., ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells, J. Phys. Chem. B 110, 22652 (2006).