| 研究生: |
鄧先浩 Teng, Hsien-Hao |
|---|---|
| 論文名稱: |
F16翼前緣延伸設計空氣動力學特性之數值研究 Design and Numerical Study on Aerodynamics Performance for F16 Leading Edge Extension |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 翼前緣延伸 、升阻力係數 、俯仰力矩 、渦流破裂 |
| 外文關鍵詞: | LEX, lift/drag ratio, pitch moment, vortex burst |
| 相關次數: | 點閱:144 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討翼前緣延伸(Leading Edge Extension,LEX)對現代多用途戰鬥機氣動特性之影響。它可以提升戰鬥機整體空氣動力特性和機動性,使得戰機在高攻角方面具有挑戰性的氣動力控制。翼前緣延伸空氣動力學特性,近年用於軍事戰機上的效果非常顯著。當戰鬥機在高攻角狀態下,翼前緣延伸的前緣形成渦流,流過機翼上產生可用氣流來使機翼延遲失速和減少升力損失。本研究使用Dassault Systemes的高階電腦輔助設計軟體CATIA來做翼前緣延伸設計,並運用商業套裝軟體ANSYS CFX進行F16氣動力外型的外部流場之數值模擬。數值研究上使用ANSYS CFX高階數值方法,求解非穩態可壓縮流那威爾-史托客方程式(Navier-Stokes equations)來探討F16空氣動力流場特性。在紊流模型上,採用剪應力傳輸(Shear Stress Transport k-ω)紊流模型。計算網格由ANSYS ICEM產生非結構性網格,採用混合型網格,於流道壁面周圍建立棱柱型網格(Prism Mesh)來模擬邊界層黏性流場,其他計算領域則採用四面體網格(Tetrahedron Mesh ),其模擬結果分析升力係數、阻力係數、俯仰力矩係數之關係與探討F16在不穩定的流場中強渦流結構與機翼上部分相互作用、流場分離現象對機翼的升阻比、渦旋破裂位置、速度分布等之影響。改變翼前緣延伸的設計,對整個F16的空氣動力特性比原本來的佳,升阻比及渦流強度的增加,渦流破裂位置延遲。在穿音速巡航時,機翼後方將產生震波及紊流結構複雜其影響空氣動力特性,但在機翼前方設置小翼片,可破壞震波區邊界層結構,增加速度,並在高攻角時產生強勁的渦流使得整體升力增加。
In this research, we use commercial software, ANSYS CFX, to carry out the simulations of the F16 aerodynamics flow fields. The flight with a modified Leading Edge Extension (LEX) is proposed to increase the lift/drag ratio. The Shear Stress Transport k-ω turbulent model is used. The unstructured grid system is generated by the ICEM CFD. The prism grid system around the wall surface is generated to simulate boundary layer viscosity flow field and Tetrahedron Mesh is used for the other computation domain. The lift, drag, and pitch moment are computed. The strong vortex structures upper the wing and vortex bursts under different sweep angle of LEX are investigated.
[1] Herbst WB., Future fighter technologies. J.AIRCRAFT,VOL.17,NO.8,August, 1980.
[2] Kalviste J., Aircraft stability characteristics at high angles of attack. AGARD-CP-235, Paper 29, 1978.
[3] Allen,H.J., and Perkins,E,W.,Characteristics of Flow over Inclined Bodies of Revolution,NACA RM50L07,1951.
[4] Coe Jr PL., Chambers JR., Letko W., Asymmetric lateral directional characteristics of pointed bodies of revolution at high angles of attack. NASA TN D-7095, 1972.
[5] Earnshaw PB., Lawford JA. Low-speed wind tunnel experiments on a series of sharp-edged delta wings. A.R.C., R&M. No. 3424, March ,1964.
[6] Pagan D., Solignac JL., Experimental study of the breakdown of a vortex generated by a delta wing. Rech Ae ́rosp, 1986.
[7] Hemsch M., Luckring J., Connection between leading-edge sweep, vortex lift, and vortex strength for delta wings.J Aircrft 1990.
[8] Malcolm GN., Impact of high-aerodynamics of dynamic stability parameters of aircraft and missiles. AGARD Lecture Series No. 114, Dynamic Stability Parameters, 1981.
[9] O’Neil PJ., Roos FW., Kegelman JT., Barnett RM, Hawk JD. Investigation of flow characteristics of a developed vortex. Naval Air Development Center, Report No. NADC-89114-60, 1989.
[10] Wentz WH., Kohlman DL., Vortex breakdown on slender sharp edged wings. J Aircr 1971;8(3):319–22 AIAA Paper,July ,1969.
[11] Kegelman JT, Roos FW. Effects of leading-edge shape and vortex burst on the flow field of a 70-degree-sweep delta wing. AIAA Paper, January ,1989.
[12] Fisher DF., Richwine DM., Banks DW., Surface flow visualization of separated flows on the forebody of an F-18 aircraft and wind-tunnel model. NASA TM-100436, 1988.
[13] Fisher DF.,Del Frate JH.,Richwine DM., In-flight flow visualization characteristics of the NASA F-18 High Alpha Research Vehicle at high angles of attack. Fifth International Symposium on Flow Visualization, Prague,Czechoslovakia, August 21–25, 1989.
[14] Luat T. Nguyen., Marilyn E. Ogburn.,William P. Gilbert., Kemper S. Kibler, Phillip W. Brown.,and Perry L. Deal., Simulator Study of Stall/PostStall Characteristics of a Fighter Airplane With Relaxed Longitudinal Static Stability. Hampton, Virginia.NASA Technical Paper 1538,December ,1979.
[15] James Chung.,A Computational Study of the Abrupt Wing Stall (AWS) Characteristics for Various Fighter Jets: Part I, F/A-18E and F-16C, 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada,January, 2003.
[16] M. Withrow., Dr. Raymond Gordnier Discusses the Research Direction of Advanced Computational Methods, Air Force Research Laboratory Horizons, April ,2005.
[17] S. Naomi McMillin,Robert M. Hall, and John E. Lamar., Transonic Experimental Observations of Abrupt Wing Stall on an F/A-18E Model, JOURNAL OF AIRCRAFT, Vol. 42, No. 3,2005.
[18] Gersten,K.,Nonlinear Airfoil Theory for Rectangular Wings in Incompressible Flow,NASA RE-3-2-59W,February 1959.
[19] Lawrence., Journal of the Aeronautical Sciences, October ,1951.
[20] Bartlett and Vidal, Journal of the Aeronautical Sciences, August ,1955.
[21] Gersten.,K,A Nonlinear Lifting Surface Theory for Low Aspect Ratio Wings, AIAA Journal, April,1963.
[22] Anon.,Equations., Tables and Charts for Compressible Flow,NACA TR1135,1953.
[23] Etkin., Bernard, Dynamics of Flight, Stability and Control, John Wiley and Sons, 1959.
[24] ANSYS CFX Theory Guide , ANSYS , Inc.2013.
[25] Spalart, P. R., and Allmaras, S.R., “A One Equation Turbulence Model for Aerodynamic Flows, La Recherche Aerospatiale, Vol. 1, p.5,1994.
[26] Wilcox, D.C., Multiscale model for turbulent flows. AIAA journal,26(11),p.1311-1320,1980.
[27] Menter,F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal,32(8),p.1598-1605,1994.
[28] Fluent, I., Aansys fluent 14: theory guide. USA: Fluent Inc,2012.
[29] Spalart, P.R., Strategies for turbulence modeling and simulation, 4th International Symposium on Engineering Turbulence Modelling and Measurements, Corsica, France, 1999.
[30] B.E.Launder and D.B.Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineer, Vol.3,pp.269-289,1974.
[31] 李天龍,以FFT為架構建立之諧波參數分析,中山大學碩士論文,1999.
[32] 紀兵兵、陳金瓶,ANSYS ICEM CFD網格劃分技術實例詳解,中國水利水店出版社,2011.
[33] D.N.Srinath and S.Mittal,Optimal airfoil shapes for low Reynolds number flows,International Journal for Nummerical Methods in Fluids,Vol.21,pp.355-381,2009.
[34]IRA H.ABBOTT and ALBERT E. VON DOENHOFF.,THEORY OF WING SECTIONS,NEW YORK,:DOVER PUBLICATIONS,INC,1959.
[35] Burno Goffer and João Batista Pessoa Falcão Filho.,EULER EQUATIONS APPLIED TO FLOW OVER NACA0012.Paper presented at the 20th international Congress of Mechanical Engineering,November ,2009.
[36] Schmitt, V. and F. Charpin, Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers, Experimental Data Base for Computer Program Assessment. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May ,1979.
[37] Naveed Durrani and Ning Qin.,Compariosn of RANS,DES and DDES results for ONERA M-6 Wing at transonic flow speed using an in-house parallel code. Paper presented at the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, January ,2011.
[38] Michiel H.Straathof and Michel J.L. van Tooren., Adjoint Optimization of a Wing Using the CSRT Method. Paper presented at the 29th AIAA Applied Aerodynamics Conference,Honolulu,Hawali,June, 2011.
[39] O.Brodersen,A.Stu ̈rmer.,DRAG PREDICTION OF ENGINE-AIRFRAME INTERFERENCE EFFECTS USING UNSTRUCTURED NAVIER-STOKES CALCULATIONS.Paper presented at the19th AIAA Applied Aerodynamics Conference,Anaheim,California, June, 2001.
[40] Neal T. Frink and William E. Milholen, II.,Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F6 Configuration.Paper present at the 21th AIAA Applied Aerodynamics Conference,Orlando,Florida,June, 2003.
[41] R. B. Langtry, M. Kuntz,and F. R. Menter.,Drag Prediction of Engine–Airframe Interference Effects with CFX-5,JOURNAL OF AIRCRAFT,Vol.42,No.6,2005.
[42] 阎超.,DPW 系列会议述评与思考,力学进展,Vol.41,No.6,2011.
[43] FLUENT 15.0 流體仿真計算從入門到精通,2015年
[44] L. T. Nguyen, M. E. Ogburn, W. P. Gilbert, K. S. Kibler, P. W. Brown, and P. L. Deal, Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane With Relaxed Longitudinal Static Stability, NASA Technical Paper 1538, Decmber ,1979.
[45] Mehdi Ghoreyshi, Ramy Korkis-Kanaan,Adam Jirasek., Simulation Validation of Static and Forced Motion Flow Physics of a Canard Configured TransCruiser. Paper present at 22nd AIAA Computationla Fluid Dynnamics Conference.Dallas,TX, June ,2015.
[46] Sean Harrison, Ryan Darraghy, Peter E. Hamlington., Canard-Wing Interference Effects on the Flight Characteristics of a Transonic Passenger Aircraft. Paper present at 34th AIAA Applied Aerodynamics Conference.Washington,DC, June, 2016.
[47] Mehdi Ghoreyshi, Adam Jirásek, Russell M. Cummings., Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics, Progress in Aerospace Sciences,Vol71,167–217,2014.