簡易檢索 / 詳目顯示

研究生: 游如淇
Yu, Ju-Chi
論文名稱: 工作記憶容量與工作負荷容量的個別差異
Individual differences in working memory capacity and workload capacity
指導教授: 楊政達
Yang, Cheng-Ta
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系認知科學碩士班
MS in Cognitive Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 61
中文關鍵詞: 中央處理系統LBA模型系統性多因子技術工作記憶容量工作負荷量
外文關鍵詞: executive function, linear ballistic accumulator model, systems factorial technology, working memory capacity, workload capacity
相關次數: 點閱:145下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,我們探討工作記憶容量(working memory capacity)與工作負荷容量(workload capacity)的關係。我們利用三種不同的雙重目標偵測作業(redundant-target detection task)測量受試者的工作負荷容量,並以操作廣度測驗(operation span task)測量受試者的工作記憶容量。在實驗一、二中,我們分別使用非母數(實驗一、二)與母數(實驗二)計算受試者在不同雙重目標偵測作業中的工作負荷容量。實驗一、二的結果均發現,在視聽偵測作業中,高工作記憶容量組的受試者比低工作記憶容量組的受試者有較高的工作負荷容量,且其大部分為超級容量(supercapacity)。然而,當雙重管道訊息均來自視覺系統,如:顏色形狀偵測作業或雙重光點偵測作業時,此效果便不復見。由此研究結果可知,工作記憶中的中央處理系統在整合跨感官訊息的知覺處理歷程中扮演了重要的角色。

    We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.

    中文摘要 I ENGLISH ABSTRACT II 誌謝 III TABLE OF CONTENTS IV LIST OF TABLES V LIST OF FIGURES VI INTRODUCTION 1 EXPERIMENT 1 7 METHOD 7 EXPERIMENT 2 22 METHOD 23 DISCUSSION 44 CONCLUSION 52 REFERENCES 52

    Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.
    Altieri, N., & Townsend, J. T. (2011). An assessment of behavioral dynamic information processing measures in audiovisual speech perception. Front Psychol, 2, 238. doi: 10.3389/fpsyg.2011.00238
    Anderson, J. R. (2013). The architecture of cognition. Cambridge, MA: Harvarad Universtiy Press.
    Baddeley, A., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), (Vol. 8, pp. 47-89). New York: NY: Academic Press.
    Bargh, J. A. (1982). Attention and automaticity in the processing of self-relevant information. 3. 43
    Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553-573. doi: 10.1037/0033-2909.130.4.553
    Blurton, S. P., Greenlee, M. W , & Gondan, M. (2014). Multisensory processing of redundant information in go/no-go and choice responses. Attention, Perception, & Psychophysics, 76(4), 1212-1233. doi: 10.3758/s13414-014-0644-0
    Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57(3), 153-178. doi: http://dx.doi.org/10.1016/j.cogpsych.2007.12.002
    Case, R., Kurland, D. M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33(3), 386-404. doi: http://dx.doi.org/10.1016/0022-0965(82)90054-6
    Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552. doi: http://dx.doi.org/10.1016/j.tics.2003.10.005
    Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450-466. doi: http://dx.doi.org/10.1016/S0022-5371(80)90312-6
    Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11(6), 1011-1026. doi: 10.3758/BF03196731
    Eidels, A., Donkin, C., Brown, S. D., & Heathcote, A. (2010). Converging measures of workload capacity. Psychonomic Bulletin & Review, 17(6), 763-771. doi: 10.3758/PBR.17.6.763
    Eidels, A., Houpt, J. W., Altieri, N., Pei, L., & Townsend, J. T. (2011). Nice guys finish fast and bad guys finish last: Facilitatory vs. inhibitory interaction in parallel systems. Journal of Mathematical Psychology, 55(2), 176-190. doi: http://dx.doi.org/10.1016/j.jmp.2010.11.003
    Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control The psychology of learning and motivation: Advances in research and theory (In strong. Ross ed., Vol. 44, pp. 145-199). New York, NY: Elsevier
    Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309-331. doi: 10.1037/0096-3445.128.3.309
    Fific, M., Little, D. R., & Nosofsky, R.M. (2010). Logical-rule models of classification response times: A synthesis of mental-architecture, random-walk, and decision-bound approaches. Psychological Review, 117(2), 309-348. doi: 10.1037/a0018526
    Fifić, M., Townsend, J. T., & Eidels, A. (2008). Studying visual search using systems factorial methodology with target—distractor similarity as the factor. Perception & Psychophysics, 70(4), 583-603. doi: 10.3758/PP.70.4.583
    Haldane, J. B. S. (1956). The estimation and significance of the logarithm of a ratio of frequencies. Annals of Human Genetics, 20(4), 309-311. doi: 10.1111/j.1469-1809.1955.tb01285.x
    Heathcote, A., Eidels, A., Houpt, J. W., Coleman, J., Watson, J., & Strayer, D. (2014). Multi-tasking in working memory. Paper presented at the Proceedings of the 36th Annual Conference of the Cognitive Science Society, Quebec city, Canada.
    Henderson, J. (2013). Memory and forgetting (Vol. 6). New York: NY: Routledge.
    Hoffman, B., & Schraw, G. (2009). The influence of self-efficacy and working memory capacity on problem-solving efficiency. Learning and Individual Differences, 19(1), 91-100. doi: http://dx.doi.org/10.1016/j.lindif.2008.08.001
    Houpt, J. W., & Townsend, J. T. (2012). Statistical measures for workload capacity analysis. Journal of Mathematical Psychology, 56(5), 341-355. doi: http://dx.doi.org/10.1016/j.jmp.2012.05.004
    Hugenschmidt, C. E., Hayasaka, S., Peiffer, A. M., & Laurienti, P. J. (2010). Applying capacity analyses to psychophysical evaluation of multisensory interactions. Information Fusion, 11(1), 12-20. doi: http://dx.doi.org/10.1016/j.inffus.2009.04.004
    Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637-671. doi: 10.3758/BF03196323
    Lecerf, T., & Roulin, J.-L. (2009). Individual differences in visuospatial working memory capacity and distractor inhibition. Swiss Journal of Psychology / Schweizerische Zeitschrift für Psychologie / Revue Suisse de Psychologie, 68(2), 67-78. doi: 10.1024/1421-0185.68.2.67
    Mack, A., Tang, B., Tuma, R., Kahn, S., & Rock, I. (1992). Perceptual organization and attention. Cognitive Psychology, 24(4), 475-501. doi: http://dx.doi.org/10.1016/0010-0285(92)90016-U
    McVay, J. C., & Kane, M. J. (2012). Why does working memory capacity predict variation in reading comprehension? On the influence of mind wandering and executive attention. Journal of Experimental Psychology: General, 141(2), 302-320. doi: 10.1037/a0025250
    Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202. doi: doi:10.1146/annurev.neuro.24.1.167
    Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247-279. doi: http://dx.doi.org/10.1016/0010-0285(82)90010-X
    Minamoto, T., Osaka, M., & Osaka, N. (2010). Individual differences in working memory capacity and distractor processing: Possible contribution of top–down inhibitory control. Brain Research, 1335(0), 63-73. doi: http://dx.doi.org/10.1016/j.brainres.2010.03.088
    Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 520-538. doi: 10.1037/0096-1523.17.2.520
    Mordkoff, J. T., & Yantis, S. (1993). Dividing attention between color and shape: Evidence of coactivation. Perception & Psychophysics, 53(4), 357-366. doi: 10.3758/BF03206778
    Mullin, P. A., Egeth, H. E., & Mordkoff, J. T. (1988). Redundant-target detection and processing capacity: The problem of positional preferences. Perception & Psychophysics, 43(6), 607-610. doi: 10.3758/BF03207751
    Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In R. J. Davidson, G. E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (pp. 1-18). New York, NY: Springer US.
    Oberauer, K., Süß, H.-M., Wilhelm, O., & Sander, N. (2007). Individual differences in working memory capacity and reasoning ability. In c. dividual differences in working memory, A. R. A. C. reasoning ability, C. Jarrold & M. J. Kane (Eds.), Variation in working memory (pp. 49-75). New York, NY, US: Oxford University Press.
    Palladino, P., & Beni, R. (1999). Working memory in aging: Maintenance and suppression. Aging Clinical and Experimental Research, 11(5), 301-306. doi: 10.1007/BF03339804
    Posner, M. I., & DiGirolamo, G. J. (2000). Cognitive neuroscience: origins and promise. Psychological Bulletin, 126(6), 873-889. doi: 10.1037/0033-2909.126.6.873
    Redick, T. S., Heitz, R. P., & Engle, R. W. (2007). Working memory capacity and inhibition: Cognitive and social consequences. In D. S. G. C. M. MacLeod (Ed.), Inhibition in cognition (pp. 125-142). Washington, DC, US: American Psychological Association.
    Rosen, V. M., & Engle, R. W. (1997). The role of working memory capacity in retrieval. Journal of Experimental Psychology: General, 126(3), 211-227. doi: 10.1037/0096-3445.126.3.211
    Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-Prime: User's Guide. Pittsburg: Psychology Software Inc.
    Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127-190. doi: 10.1037/0033-295X.84.2.127
    Townsend, J. T., & Ashby, F. G. (1978). Methods of modeling capacity in simple processing systems. Cognitive theory, 3, 200-239.
    Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.
    Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: A unified methodology for response time measures of efficiency as workload is varied. Psychonomic Bulletin & Review, 18(4), 659-681. doi: 10.3758/s13423-011-0106-9
    Townsend, J. T., & Fifić, M. (2004). Parallel versus serial processing and individual differences in high-speed search in human memory. Perception & Psychophysics, 66(6), 953-962. doi: 10.3758/BF03194987
    Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary perception: An investigation of parallel, serial, and coactive theories. Journal of Mathematical Psychology, 39(4), 321-359. doi: http://dx.doi.org/10.1006/jmps.1995.1033
    Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136. doi: http://dx.doi.org/10.1016/0010-0285(80)90005-5
    Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127-154. doi: http://dx.doi.org/10.1016/0749-596X(89)90040-5
    Wenger, M. J., & Gibson, B. S. (2004). Using hazard functions to assess changes in processing capacity in an attentional cuing paradigm. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 708-719. doi: 10.1037/0096-1523.30.4.708
    Wenger, M. J., & Townsend, J. T. (2001). Faces as Gestalt stimuli: Process characteristics. In M. J. W. J. T. Townsend (Ed.), Computational, geometric, and process perspectives on facial cognition: Contexts and challenges (pp. 229-284). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
    Yang, C.-T. (2011). Relative saliency in change signals affects perceptual comparison and decision processes in change detection. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1708-1728. doi: 10.1037/a0024257
    Yang, C.-T., Chang, T.-Y., & Wu, C.-J. (2013). Relative change probability affects the decision process of detecting multiple feature changes. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1365-1385. doi: 10.1037/a0030693
    Yang, C.-T., Hsu, Y.-F., Huang, H.-Y., & Yeh, Y.-Y. (2011). Relative salience affects the process of detecting changes in orientation and luminance. Acta Psychologica, 138(3), 377-389. doi: http://dx.doi.org/10.1016/j.actpsy.2011.09.003
    Yang, C.-T., Little, D. R., & Hsu, C.-C. (2014). The influence of cueing on attentional focus in perceptual decision making. Attention, Perception, & Psychophysics, 76(8), 2256-2275. doi: 10.3758/s13414-014-0709-0
    Zehetleitner, M., Krummenacher, J., & Müller, H. J. . (2009). The detection of feature singletons defined in two dimensions is based on salience summation, rather than on serial exhaustive or interactive race architectures. Attention, Perception, & Psychophysics, 71(8), 1739-1759. doi: 10.3758/APP.71.8.1739

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE