| 研究生: |
蔡宜倫 Tsai, Yi-Lun |
|---|---|
| 論文名稱: |
應用於射頻前端系統的寬頻半循環器及平衡器之單晶片研製 Broadband Quasi-Circulator and Active Balun Circuit for the RF Front-End System Applications |
| 指導教授: |
王永和
Wang, Yeong-Her 詹寶珠 Chung, Pau-Choo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 寬頻 、隔離度 、半循環器 、巴倫電路 、平衡器 、線性度 |
| 外文關鍵詞: | Broadband, Balun, Isolation, P1dB, Quasi-circulator |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在研製應用於寬頻的射頻微波電路中的半循環器及平衡器單石晶片。前兩章介紹射頻微波電路的研究背景與基礎理論。第三章包含了兩個主動式的半循環器,首先提出利用相位相消達高隔離度之寬頻CMOS半循環器,電路核心為串接兩組buffer以降低電晶體的高頻效應,因此而可藉由相位相消技巧獲得極佳的傳輸端與接收端之間隔離度、提高電路的操作頻帶並且拓展頻寬,由量測結果,在5-33 GHz頻寬內,埠一至埠二的插入損失為1-8 dB,埠二至埠三為4-8 dB,各埠的隔離度皆大於20 dB,而埠一與埠三間的隔離度最高可達60 dB。接著,提出結合耦合器可操作在Ka至W頻段之高隔離度CMOS半循環器,電路利用結合藍吉耦合器的寬頻與與電晶體可操作在高頻的特色使電路可具有極寬的操作頻率,相較以往包含被動元件的半循環器,新的電路架構方式,不但具有小面積且有極寬頻的優點,由量測結果,在26-67 GHz內,插入損耗皆小於10 dB,埠一至埠三的隔離度最高可達55 dB,而其他各埠的隔離度皆大於20 dB。
第四章則是提出寬頻且高線性度之低功耗平衡器,此電路使用一組差動對產生輸出訊號,再串接current-reuse的LNA來提供增益並且降低消耗功率,使得此電路具有高增益及低功耗的優點,另外,使用電感來補償兩輸出埠的相位差,並且吸收電晶體的寄生電容產生的效應,除了可減少兩輸出平衡相位差外也可使增益平坦化,由模擬結果,在6-29 GHz的頻寬內,增益最高可達15 dB,P1dB為2.3 dBm,相位差皆小於4o。
Two quasi-circulators and a active balun using TSMC 90 nm CMOS process for communication front-end system applications are proposed. First, a broadband and high isolation active quasi-circulator MMIC is introduced. The quasi-circulator cascaded two buffer stages to expand the bandwidth and improve the isolation from port 2 to port 1 and from port 3 to port 2. The leakage signal from port 1 to port 3 can be reduced effectively by the phase cancellation technique. As the measured results show, the proposed quasi-circulator possesses an insertion loss less than 8 dB and all isolations on 5-33 GHz are better than 20 dB.
Afterward, a Ka to W band CMOS quasi-circulator combined Lange coupler and transistors to achieve high isolation and broad bandwidth by phase cancellation technique. Based on the simulation, very wideband operation from 26 to 120 GHz can be obtained. The measured data shows that better than 40 dB isolation between the port 1 and port 3 with 94 GHz (26-120 GHz) operational bandwidth. While that for port 2 to port 1 and port 3 to port 2 is better than 30 and 35 dB, respectively. The insertion loss of port 1 to port 2 is 7-10 dB, and that of port 2 to port 3 is 6-10 dB. Due to the measurement system limitation, the overall measured bandwidth of the proposed quasi-circulator was implemented in the range of DC-67 GHz, therefore, the measured insertion losses is about 6-9 dB and isolations are better than 20 dB from 26-67 GHz.
Finally, a high gain and high P1dB active balun with low power consumption was proposed. The proposed circuit consisted of differential stage and current-reuse LNA to achieve high insertion gain and reduce the DC power consumption. Moreover, the proposed active balun used single differential stage can avoid to decreasing the P1dB, and cascaded a gate inductor with differential stage to enhance the operation bandwidth. Base on the simulated results, the proposed active balun exhibits good insertion gain of 12-15 dB and low gain/phase error are less than 1.5 dB/4 degree with high P1dB of 2.3 dBm in 6-25 GHz operation bandwidth.
第一章:
[1] B. Razavi, “RF IC design challenges,” Design Automation Conference, 1998.Proceedings, 15-19 June 1988.
[2] S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: The promise of high-speed, short-range wireless connectivity,” Proceedings of the IEEE, vol.92, no. 2, pp. 295-311, Feb. 2004.
第二章:
[1] H. T. Friis, ”Noise Figure of Radio Receivers,” Proceeding of the Institute of Radio Engineers, vol. 32, pp. 419-422, Jul. 1944.
[2] C. G. Jakobson, I. Bloom and Y. Nemirovsky, ”1/f noise in CMOS transistors for analog applications,” Electrical and Electronics Engineers in Israel, pp. 557-560, Nov. 1996.
[3] B. Razavi ,” RF Microelectronics, Upper Saddle River,” 1998.
[4] D. M. Pozar, Microwave and RF design of wireless systems, New York :JohnWiley, 2001.
[5] S. A. Mass, Microwave Mixers, 2nd ed. Boston, MA: Artech House.
[6] M. T. Faber, J. Chramiec, and M. E. Adamski, Microwave and Millimeter-Wave Diode Frequency Multipliers. Boston, MA: Artech House, 1995.
[7] S. A. Maas, Nonlinear Microwave and RF circuits 2nd ed., Artech House, 2003.
[8] S. A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House,1998.
第三章第二節:
[1] H. S. Wu, C. W. Wang and C. K. Tzuang, “CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band,” IEEE Microwave Theory and Techniques, vol. 58, no. 8, pp. 2084-2091, Aug. 2010.
[2] A. Gasmi, B. Huyart, E. Bergeault, L. Jallet, “Noise and power optimization of a MMIC quasi-circulator,” IEEE Microwave Theory and Techniques, vol. 45, no. 9, pp. 1572-1577, Sep. 1997.
[3] S. He, N. Akel and C. E. Saavedra, “Active quasi-circulator with high port-to-port isolation and small area,” Electronics Letters, vol. 48, no. 14, pp. 848 - 850, Jul. 2012.
[4] C. H. Chang, Y. T. Lo and J. F. Kiang, “A 30GHz active quasi-circulator with current-reuse technique in 0.18 mm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 12, pp. 693-695, Dec. 2010.
[5] Y. Zheng and C. Saavedra, “Active quasi-circulator MMIC using OTAs,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 4, pp. 218-220, Apr. 2009.
[6] S. C. Shin, J. Y. Huang, K. Y. Lin and H. Wang, “A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 797-799, Dec. 2008.
[7] A. Ohlsson, V. P. Gonzalez and D. V. Segovia, “Active integrated circulating antenna based on non-reciprocal active phase shifters,” Antennas and Propagation, pp. 1-5, Nov. 2007.
[8] M. Palomba, A. Bentini, D. Palombini, W. Ciccognani and E. Limiti, “A novel hybrid active quasi-circulator for L-band applications,” Microwave Radar and Wireless Communications, vol.1, no. 4, pp. 41-44, May. 2012.
[9] P. R. Mason, “Analysis of four-port circulators using nonreciprocal phase shifters and directional couplers,” Electrical Engineers, no. 5, vol. 110, pp. 869-880, May. 1963.
[10] R. Bahri, A. Abdipour and G. Moradi, “Design a new type of active quasi-circulator module,” Microwave Conference, pp. 1-4, Dec. 2008.
[11] S. W. Y. Mung and W. S. Chan, “Novel active quasi-circulator with phase compensation technique,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 800-802, Dec. 2008.
[12] S. K. Cheung., T. P. Halloran, W. H. Weedon and C. P. Caldwell, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Microwave Theory and Techniques, vol. 58, no. 3, pp. 489-497, Mar. 2010.
[13] C. E. Saavedra and S. S. K. Ho, “Optical Quasi-Circulator Using Power Couplers and Optical Amplifiers,” Photonics Technology Letters, vol. 22, no. 9, pp. 604-606, May. 2010.
[14] H. S. Wu, C. W. Wang and C. K. C. Tzuang, “CMOS Active Quasi-Circulator With Dual Transmission Gains Incorporating Feed forward Technique at -Band,” IEEE Microwave Theory and Techniques, vol. 58, no. 8, pp. 2084-2091, Aug. 2010.
第三章第三節:
[1] F. Gumbmann, T. H. Phat, J. Weinzierl and L. P. Schmidt, “Optimization of a fast scanning millimetre-wave short range SAR imaging system,” Radar Conference, pp. 24-27, Oct. 2007.
[2] U. Pfeiffer and E. Ojefors, “Terahertz imaging with CMOS/BiCMOSprocess technologies,” ESSRIC, pp. 52–60, Sep. 2010,
[3] G. Sapone, E. Ragonese, A. Italia and G. Palmisano , “A 0.13 μm SiGe BiCMOS Colpitts-Based VCO for W-Band Radar Transmitters,” IEEE Microwave Theory and Techniques, no. 1,vol. 61, pp. 185-194, Jan. 2013.
[4] C. Vittoria, Microwave Properties of Magnetic Films. Hackensack, NJ, US: World Sci., 1994, ch. VI–VIII, pp. 125–184.
[5] L. Douglas, Microwave Circulator Design. Norwood, MA: Artech House, 1989, ch. 5, pp. 83–121.
[6] P. Katzin, Y. Ayasli, L. Reynolds and B. Bedard, “6 to 18 GHz MMIC Circulators,” Microwave Jorunal, pp. 248-256, May. 1992.
[7] R. Dougherty, “Circulate Signals with Active Devices on Monolithic Chips”, Microwaves & RF, pp. 85-87, Jun. 1989.
[8] S. Hara, T. Tokumitsu and M. Aikawa, “Novel Unilateral Circuits for MMIC Circulators,” IEEE Microwave Theory and Techniques, vol. 38, no. 10, pp. 1399-1406, Aug. 1990.
[9] R. Bahri, A. Abdolali and M. Gholamreza, “Design a new type of active quasi circulator module." Microwave Conference ,pp. 1-4, Dec. 2008.
[10] S. K. Cheung, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” Microwave Theory and Techniques, no. 3, vol. 58, pp. 489-497, Mar. 2010.
[11] J. R. Yang, D. W. Kim and S. Hong, “Quasi-circulator for effective cancellation of transmitter leakage signals in monostatic six-port radar,” Electronics Letters, no.21, vol. 45, pp. 1093-1095, Oct. 2009.
[12] T. Halloran, W. Weedon, C. Caldwell and S. Cheung, “Active quasi-circulators using quadrature hybrids for simultaneous transmit and receive,” Microwave Symposium Digest, pp. 381-384, Jun. 2009.
[13] M. Palomba, A. Bentini, D. Palombini, W. Ciccognani and E. Limiti, “A novel hybrid active quasi-circulator for L-band applications,” Microwave Radar and Wireless Communications, vol.1, no. 4, pp. 41-44, May. 2012.
[14] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Noise and power optimization of a MMIC quasi-circulator,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1572–1577, Sep. 1997.
[15] S. He, N. Akel and C. E. Saavedra, “Active quasi-circulator with high port-to-port isolation and small area,” Electronics Letters, vol. 48, no. 14, pp. 848 - 850, Jul. 2012.
[16] C. H. Chang, Y. T. Lo and J. F. Kiang, “A 30GHz active quasi-circulator with current-reuse technique in 0.18 μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 12, pp. 693–695, Dec. 2010.
[17] S. C. Shin, J. Y. Huang, K. Y. Lin, and H. Wang, “A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 797–799, Dec. 2008.
[18] H. S. Wu, C. W. Wang, and C. K. Tzuang, “CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band,” IEEE Microwave Theory and Techniques, vol. 58, no. 8, pp. 2084-2091, Aug. 2010.
[19] R. Waugh and D. Lacombe , “unfolding the lange coupler,” IEEE Microwave Theory and Techniques, no. 11, vol. 20, pp. 777-779, Nov. 1972.
[20] W. Pin, “Design Equations for an Interdigitated Directional Coupler,” IEEE Microwave Theory and Techniques,no. 2, vol. 63, pp. 253-255, Feb. 1975.
第四章:
[1] F. Azevedo, F. Fortes and M.J. Rosario, “A new on-chip CMOS active balun integrated with LNA,” 14th IEEE International Conference on Electronics, Circuits and Systems, pp. 1213-1216, Dec. 2007.
[2] H. B. Zhang, M. Cai, H. Wu and H. L. Chen, “A 2.5GHz BiCMOS low noise and high-gain differential LNA for WLAN receiver,” Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronic, pp. 33-36, Jan. 2009.
[3] T.T. Hsu and C.N. Kuo, “Low voltage 2-mW 6~10.6-GHz ultrawideband CMOS mixer with active balun,” IEEE International Symposium on Circuits and Systems, pp. 5704-5707, May. 2006.
[4] C. I. Shie, C. H. Hsieh and Y. C. Chiang, “UWB LNA and mixer with an active balun in 0.18um CMOS process,” Asia Pacific Microwave Conference, pp. 1140-1143, Dec. 2009.
[5] M. Kawashima, T. Nakagawa and K. Araki, “A Novel Broadband Active Balun,” Microwave Conference, pp. 495-498, Oct. 2003.
[6] C. Viallon, D. Venturin, J. Graffeuil and T. Parra, “Design of an original K-band active balun with improved broadband balanced behavior,” IEEE Transactions on Microwave Theory and Techniques, vol. 15, no. 4, pp. 280-282, Apr. 2005.
[7] K. Jung, W. R. Eisenstadt, R. M. Fox, A. W. Ogden and J. Yoon, “Broadband active balun using combined cascode-cascade configuration,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 8, pp. 1790-1796, Aug. 2008.
[8] B. J. Huang, B. J. Huang, K. Y. Lin and H. Wang, “A 2-40 GHz active balun using 0.13 μm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, Mar. 2009.
[9] D. Robertson and A. H. Aghvami, “A novel wideband MMIC active balun,” 20th European Microwave Conference, pp. 419-423, Sep. 1990.
[10] F. Azevedo, F. Fortes and M. J. Rosario, “A new on-chip CMOS active balun integrated with LNA,” Electronics, Circuits and Systems, pp. 1213-1216, Dec. 2007.
[11] G. S. K. Yong and C. E. Saavedra, “A compact capacitor compensated wideband balun in CMOS technology,” Biennial Symposium on Communications, pp. 306-309, Jun. 2008.
[12] D. H. Lee, J. Han, C. Park and S. Hong, “A CMOS active balun using bond wire inductors and a gain boosting technique,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 9, pp. 676-678, Sep. 2007.
[13] D. Robertson and A. H. Aghvami, “A novel wideband MMIC active balun,” 20th European Microwave Conference, pp. 419-423, Sep.1990.
[14] M. Kawashima, T. Nakagawa, and K. Araki, “A novel broadband active balun,” 33rd European Microwave Conference, pp. 495-498, Oct. 2003.
[15] T. T. Hsu and C.-N. Kuo, “Low power 8-GHz ultra-wideband active balun,” Silicon Monolithic Integrated Circuits in RF Systems, pp. 18-20, Jan. 2006.
[16] X. Fan, S. S. Edgar and S. M. Jose, “A 3GHz-10GHz common gate ultra wideband low noise amplifier,” 48th Circuits and Systems, vol. 1, pp. 631-634. Aug. 2005.
[17] Y. H. Yu, Y. S. Yang and Y. J. Chen, “A compact wideband CMOS low noise amplifier with gain flatness enhancement,” Solid-State Circuits, vol. 45, no. 3, pp. 502-509, Mar. 2010.
[18] K. Jung, W. R. Eisenstadt, R. M. Fox, A. W. Ogden and J. Yoon, “Broadband active balun using combined cascode-cascade configuration,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 8, pp. 1790–1796, Aug. 2008.
[19] H. H. Chiang, F. C. Huang, C. S. Wang and C. K. Wang, “A 90 nm CMOS V-band low-noise active balun with broadband phase-correction technique,” IEEE Journal of Solid-State Circuit, vol. 46, no. 11, pp. 2583-2591, Nov. 2011.
[20] C. Viallon, D. Venturin, J. Graffeuil and T. Parra, “Design of an original K-band active balun with improved broadband balanced behavior,” IEEE Transactions on Microwave Theory and Techniques, vol. 15, no. 4, pp. 280-282, Apr. 2005.
[21] M. Ferndahl and H. O. Vickes, “The matrix balun—A transistor-based module for broadband applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 1, pp. 53-60, Jan. 2009.
[22] W. S. Hsien, C. H. Yeh, and C. C. Ching, “A DC-21 GHz low imbalance active balun using darlington cell technique for high speed data communications,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 11, pp. 728-730, Nov. 2009.
[23] B. J. Huang, B. J. Huang, K. Y. Lin, and H. Wang, “A 2–40 GHz active balun using 0.13 μm CMOS process” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, Mar. 2009.
校內:2023-01-01公開