| 研究生: |
黃之瑜 Huang, Chih-Yu |
|---|---|
| 論文名稱: |
全球碳定價機制效益比較:大數據分析的實證研究 The Comparison of Global Carbon Pricing Mechanism Effectiveness: An Empirical Research Based on Big Data Analysis |
| 指導教授: |
馬瀰嘉
Ma, Mi-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 碳定價 、碳定價閾值 、跨境協調機制 、碳邊境調整 、Python大數據分析 、貿易影響 |
| 外文關鍵詞: | Carbon pricing, Carbon price threshold, Cross-border coordination mechanism, Carbon border adjustment, Python data analysis, Trade impact |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討全球碳定價機制在效益上的差異及其協調問題,並為建立一套跨境碳定價協調框架提供實證分析、創新思路和政策建議。面對日益嚴峻的氣候變遷挑戰,各國實施的碳定價機制存在顯著差異,導致碳洩漏、競爭力不均等問題,阻礙全球減排目標的實現。本研究運用Python大數據分析技術,收集並分析了全球主要經濟體的碳定價數據、雙邊貿易流數據以及產業碳排放數據,建立了多維度分析框架,評估不同碳定價機制的效能與影響。
研究結果顯示,碳定價與減排效果之間存在非線性關係,50-100美元/噸CO₂e區間有最佳減排效果,超過100美元/噸後減排效果反而下降,呈現"邊際遞減效應"。不同地區和收入群體間的碳定價水平存在顯著差異,歐洲與中亞地區和高收入國家維持較高碳定價,其他地區與中低收入國家碳定價相對較低,且差距呈擴大趨勢。透過複迴歸分析發現,地理區域(拉丁美洲與加勒比海地區、東亞與太平洋地區、撒哈拉以南非洲地區、北美地區、歐洲與中亞地區)、收入水平(高收入、中上等、中低收入)、政策工具類型(ETS)、轄區覆蓋比例、年份是影響群體碳定價的顯著因素,政策工具類型(碳稅)和機制實施年限不顯著。透過隨機森林模型分析發現,轄區覆蓋比例、機制實施年限和收入水平是影響群體碳定價水平的三大關鍵因素。此外,國家間碳定價差距與碳定價機制類型呈現相關性,較大的碳定價差距可能導致碳洩漏問題,這為碳邊境調整機制(CBAM)的實施提供了理論依據。
This study investigates the effectiveness of global carbon pricing mechanisms and the challenges of cross-border coordination. Using Python-based big data analytics, we compile carbon pricing data from major economies, bilateral trade flows, and sectoral emissions to construct a multi-dimensional assessment framework. Results reveal a nonlinear relationship between carbon pricing and emission reduction: the range of USD 50–100 per ton of CO₂e achieves the greatest mitigation effect, while effectiveness diminishes beyond USD 100 per ton. Significant disparities exist across regions and income groups, with Europe, Central Asia, and high-income countries maintaining higher prices, while other regions and lower-income countries set lower levels, widening the global gap.
Regression analysis shows that geographic region, income level, ETS adoption, coverage, and year significantly shape pricing levels, while carbon tax type and policy duration are not. Random forest models further highlight jurisdictional coverage, years of implementation, and income level as key drivers. Cross-country disparities in pricing are closely linked to mechanism types, with larger gaps increasing risks of carbon leakage and supporting the case for Carbon Border Adjustment Mechanisms (CBAM).
[1] World Bank (2024).《2024 State and Trends of Carbon Pricing》 http://hdl.handle.net/10986/41544
[2] Metcalf, G. E. (2019). On the economics of a carbon tax for the United States. Brookings Papers on Economic Activity(1), 405-484.
[3] Goulder, L. H. & Schein, A. (2013). Carbon taxes vs. Cap and trade: A critical review, NBER Working Paper, No. w19338, Available at SSRN. https://ssrn.com/abstract=2311587
[4] Lin, B. & Li, X. (2011). The effect of carbon tax on per capita CO2 emissions, Energy Policy, Elsevier, 39(9), 5137-5146.
[5] Klenert, D., Mattauch, L., Combet, E., Edenhofer, O., Hepburn, C., Rafaty, R., & Stern, N. (2018). Making carbon pricing work for citizens. Nature Climate Change, 8(8), 669-677.
[6] Ellerman, A. D., Marcantonini, C., & Zaklan, A. (2016). The European Union emissions trading system: ten years and counting. Review of Environmental Economics and Policy.
[7] Borghesi, S., & Flori, A. (2018). EU ETS Facets in the Net: Structure and Evolution of the EU ETS Network. Energy Economics, 75, 602-635.
[8] Karplus, V. J. (2021). China National ETS (June 2021).https://www.scribd.com/document/811036685/karplus-china-national-ets-june-2021-chinese
[9] Burtraw, D., Palmer, K. L., Munnings, C., Weber, P., & Woerman, M. (2013). Linking by degrees: Incremental alignment of cap-and-trade markets. Discussion Paper 13-04, Resources for the Future, Washington, DC.
[10] Kardish, C., 段茂盛, 陶玉潔, 李莉娜和Hellmich, M. (2021). 歐盟碳邊境調節機制與中國:政策設計選擇、潛在應對措施及可能影響. 柏林: adelphi.
[11] Kachi, A., Mooldijk, S., Warnecke, C., & Bmu, N. S. (2019). Carbon pricing options for international maritime emissions. New climate-institute for climate policy and global sustainability gGmbH: Berlin, Germany.
[12] Schneider, L., & Theuer, S. L. (2019). Environmental integrity of international carbon market mechanism under the Paris Agreement.Climate Policy, 3, 386-400.
[13]《2022 Environmental Sustainability Report》, Microsoft.https://dmc.partner.microsoft.com/cdn/assets/00b65c71-a569-43a1-8366-45352e750057/content/2022%20Microsoft%20Environmental%20Sustainability%20Report_23111723080904.pdf
[14] Stern, N. & Stiglitz, J. E. (2021). The social cost of carbon, risk, distribution, market failures: an alternative approach. Working Paper 28472 (National Bureau of Economic Analysis).
[15] Stern, N. (2007).《The Economics of Climate Change》http://mudancasclimaticas.cptec.inpe.br/rmclima/pdfs/destaques/sternreview_report_complete.pdf
[16] Jakob, M., Chen, C., Fuss, S., Marxen, A., Rao, N. D., & Edenhofer, O. (2016). Carbon pricing revenues could close infrastructure access gaps. World Development, 84, 254-265.
[17] Dorband, I. I., Jakob, M., Kalkuhl, M., & Steckel, J. C. (2019). Poverty and distributional effects of carbon pricing in low-and middle-income countries–A global comparative analysis. World Development, 115, 246-257.
[18] Aldy, J. E., & Pizer, W. A. (2015). The competitiveness impacts of climate change mitigation policies. Journal of the Association of Environmental and Resource Economists, 2(4), 565-595.
[19] Boutabba, M. A., & Lardic, S. (2017). EU emissions trading scheme, competitiveness and carbon leakage: New evidence from cement and steel industries. Annals of Operations Research, 255, 47-61.
[20] Fischer, C., & Fox, A. K. (2012). Comparing policies to combat emissions leakage: Border carbon adjustments versus rebates. Journal of Environmental Economics and Management, 64(2), 199-216.
[21] Branger, F., & Quirion, P. (2014). Would border carbon adjustments prevent carbon leakage and heavy industry competitiveness losses? Insights from a meta-analysis of recent economic studies. Ecological Economics, 99, 29-39.
[22] Verde, S. F. (2020). The impact of the EU emissions trading system on competitiveness and carbon leakage: the econometric evidence. Journal of Economic Surveys, 34(2), 320-343.
[23] Böhringer, C., Balistreri, E. J., & Rutherford, T. F. (2012). The role of border carbon adjustment in unilateral climate policy: Overview of an energy modeling forum study (EMF 29). Energy Economics, 34, S97-S110.
[24] Mehling, M. A., Van Asselt, H., Das, K., Droege, S., & Verkuijl, C. (2019). Designing border carbon adjustments for enhanced climate action. American Journal of International Law, 113(3), 433-481.
[25] Pauwelyn, J., & Kleimann, D. (2020). Trade related aspects of a carbon border adjustment mechanism: a legal assessment. European Parliament, Directorate-General for External Policies of the Union, https://data.europa.eu/doi/10.2861/095035
[26] Doda, B., & Taschini, L. (2017). Carbon markets: link with caution. Nature, 544(7650), 297-297.
[27] Burtraw, D., Palmer, K. L., Munnings, C., Weber, P., & Woerman, M. (2013). Linking by degrees: Incremental alignment of cap-and-trade markets. Resources for the Future DP, 13-04.
[28] Ranson,M.,& Stavins,R.N.(2016).Linkage of greenhouse gas emissions trading systems: Learning from experience.Climate Policy,16(3), 284-300.
[29] Kardish, C., Duan, M., Tao, Y., Li, L., Hellmich, M. (2021). The EU carbon border adjustment mechanism (CBAM) and China: unpacking options on policy design, potential responses, and possible impacts. Berlin: adelphi.
[30] Zhu, B., Shi, X., Chevallier, J., Wang, P., & Wei, Y. M. (2016). An adaptive multiscale ensemble learning paradigm for nonstationary and nonlinear energy price time series forecasting. Journal of Forecasting, 35(7), 633-651.
[31] Acheampong, A. O., Adams, S., & Boateng, E. (2019). Do globalization and renewable energy contribute to carbon emissions mitigation in Sub-Saharan Africa?. Science of the Total Environment, 677, 436-446.
[32] Rolnick, D., Donti, P.L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A. S., Maharaj, T., Sherwin, E.D., Mukkavilli, S.K., Kording, K.P., Gomes, C.P., Ng, A.Y., Hassabis, D., Platt, J.C., Creutzig, F., Chayes, J. and Bengio, Y. (2022). Tackling climate change with machine Learning. ACM Comput. Surv. 55, 2, Article 42, 96 pages. https://doi.org/10.1145/3485128
[33] Burlig, F., Knittel, C., Rapson, D., Reguant, M., & Wolfram, C. (2020). Machine learning from schools about energy efficiency.Journal of the Association of Environmental and Resource Economists, 7(6), 1181-1217.
[34] Böhringer, C., Fischer, C., Rosendahl, K. E., & Rutherford, T. F. (2022). Potential impacts and challenges of border carbon adjustments. Nature Climate Change, 12(1), 22-29.
[35] Dröge, S. (2021). Ein CO2-Grenzausgleich für den Green Deal der EU: Funktionen, Fakten und Fallstricke (No. 9/2021). SWP-Studie.
[36] Davis, J. M., & Heller, S. B. (2017). Using causal forests to predict treatment heterogeneity: An application to summer jobs. American Economic Review, 107(5), 546-550.
[37] Naegele, H., & Zaklan, A. (2019). Does the EU ETS cause carbon leakage in European manufacturing? Journal of Environmental Economics and Management, 93, 125-147.
[38] Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685-725.
[39] Nordhaus, W. D. (1993). Rolling the‘DICE’: an optimal transition path for controlling greenhouse gases. Resource and Energy Economics, 15(1), 27-50.
[40] Wang, G., Li, S., & Yang, L. (2022). Research on the Pathway of Green Financial System to Implement the Realization of China’s Carbon Neutrality Target. International Journal of Environmental Research and Public Health, 19(4), 2451. https://doi.org/10.3390/ijerph19042451
[41] Weitzman, M. L. (1974). Free access vs. private ownership as alternative systems for managing common property. Journal of Economic Theory, 8(2), 225-34.
[42] Fan, H., Peng, Y., Wang, H. and Xu, Z. (2021). Greening Through Finance? Journal of Development Economics, 152, Article ID: 102683.
[43] Murray, B., & Rivers, N. (2015). British Columbia’s revenue-neutral carbon tax: A review of the latest“grand experiment”in environmental policy. Energy Policy, 86, 674-683.
[44] Metcalf, G. E., & Stock, J. H. (2023). The macroeconomic impact of Europe’s carbon taxes. American Economic Journal: Macroeconomics, 15(3), 265-286.
[45] Shu, Y., Zhang, L., Zhang, Y., Wang, Y., Lu, G., Yuan, B., & Xia, P. (2021). Carbon peak and carbon neutrality path for China’s power industry. Strategic Study of Chinese Academy of Engineering, 23(6), 1-14.
[46] Zachmann, G., & McWilliams, B. (2020). A European carbon border tax: much pain, little gain. Brussels: Bruegel.
[47] Mehling, M., & Jakob, M. (2024). Subsidy-Related Aspects of the EU Carbon Border Adjustment Mechanism (CBAM). Journal of World Trade, 58(3).
[48] Bistline J, Abhyankar N, Blanford G, Clarke L, Fakhry R, McJeon H, Reilly J, Roney C, Wilson T, Yuan M, Zhao A. (2022). Actions for reducing US emissions at least 50% by 2030. Science. 376(6596): 922-924. doi: 10.1126/science.abn0661. Epub 2022 May 26. PMID: 35617382.