| 研究生: |
李傳傑 Li, Chuan-chieh |
|---|---|
| 論文名稱: |
電噴霧法製備SiO2(6-10nm)、葡萄糖(8-30nm)、味精(8-30nm)奈米微粒及水蒸氣在帶電與中性微粒上非均勻相核凝之研究 Heterogeneous Nucleation of Water Vapor on Charged/Neutral Nanoparticles of SiO2 (6-30nm)、Glucose(8-30nm) and Glutamate (8-30nm) generated by Electrospray |
| 指導教授: |
陳進成
Chen, Chin-cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 非均勻相核凝 、葡萄糖 、電噴霧 、味精 |
| 外文關鍵詞: | electrospray, heterogeneous nucleation, glutamate, glucose |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米微粒因為粒徑很小而可能顯現出與巨觀材料性質不同的效應。在大氣中因為天然及人為因素亦產生相當多的奈米微粒,成為大氣氣膠中重要成分。本研究以電噴霧法製備不可溶SiO2以及可溶葡萄糖(Glucose)、味精(Glutamate)奈米微粒並以流動型雲霧室探討微粒在水蒸氣中所引起之非均勻相核凝機構。
實驗中利用電噴霧系統製備10nm以下之高濃度SiO2、葡萄糖及味精微粒,故探討溶液濃度、溶液流速、暈光放電電壓、載流氣體流量等因素對微粒粒徑及濃度的影響。
SiO2微粒與葡萄糖、味精微粒在過飽和水蒸氣中,臨界過飽和度皆隨粒徑減小而增大。定性上與理論計算之趨勢相符合,但定量上仍有一段差距。
電荷效應部份,單一粒徑之SiO2與葡萄糖中性微粒臨界過飽和度皆大於帶電微粒,可觀察到電荷效應對核凝現象的影響,粒徑越小越明顯。味精微粒則稍微有電荷效應,但不明顯,需往更小粒徑探討。
電荷極性效應部份,帶單一負電之SiO2微粒對水蒸氣的核凝能力大於帶單一正電微粒。葡萄糖、味精微粒帶單一負電之對水蒸氣的核凝能力大於帶單一正電微粒,此結果與文獻中所提之結果相符。
Condensation of a supersaturated water vapor on nanoparticles of SiO2 、glucose and glutamate was investigated in the FCC. An electrospray system is developed and has succeeded in producing nanoparticles of less than 10 nm. The particle size distribution is controllable by the adjustment of the operation parameters such as flow rates, corona discharge voltage, etc.
The onset of heterogeneous nucleation was determined through measurements of removal efficiency as a function of the supersaturation along with observations of the laser light scattered by the falling droplets. Our results showed that the experimental Scr decreases with increasing particle size at a rate in reasonable agreement with the predictions.
The Scr of neutral particles of SiO2 are slightly higher than the predictions of the Fletcher version of Volmer theory for neutral particles. For glucose and glutamate, experimental Scr of neutral and charged particles are higher than the theoratical predictions of Volmer theory and kohler theory.
The charge effect of SiO2 and glucose are observed, and it is much higher than the theoretical predictions. Furthermore, for the sign preference, water condenses more readily on negatively charged particle SiO2 、glucose and glutamate. The sign preference we observed agrees with the sign preference observed in the condensation of water vapor on ions.
The Scr of the soluble particles is smaller than the insoluble particles, agreeing with the theoretical prediction.
1.N. H. Fletcher, “The Physics of Rainclouds”,1st Ed., (Cam- bridge University Press), p390 (1969).
2.C. C. Chen and C. J. Tao, J.Chem. Phys., “Condensation of supersaturated water vapor on submicrometer particles of SiO2 and TiO2”, 112, 15, p9967 (2000).
3.W. C. Hinds, “Aerosol Techmology”, (Wiley, New York), (1982).
4.M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi, “Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe”, Chem. Mater., 8, p173. (1996)
5.C. H. Chen, M. H. J. Emond, E. M. Kelder, B. Meester and J. Schoonman, “Electrostatic sol-spray deposition of nanostructured ceramic thin films“, J. Aerosol Sci. 30, 7, p959 (1999).
6.J. Zeleny, “On the conditions of instability of electrified drops with applications to the electrical discharge from liquid points”, Proc. Camb. Phil. Soc., 18, p71 (1915).
7.L. Stanley, J. Kaufman, “Analysis of biomolecules using electrospray and nanoparticles methods:the gas phase electrophoretic mobility molecular analyzer (gemma)”, J. Aerosol Sci. 29, 5/6, p537 (1998).
8.K. Tang and A. Gomez, “Generation by electrospray of monodisperse water droplets from targeted drug delivery by inhalation”, J. Aerosol Sci. 25, 6, p1237 (1994).
9.L. Stanley, J. Kaufman, Analytical Chemistry News & Features.4, 6, 386 A.
10.M. Cloupeau and B. Prunet-Foch, “Electrostatic spraying of liquids in cone-jet mode”, J. Electrostat., 22, p135 (1989).
11.D. R. Chen, Y. H. David and L. Stanley, J. Kaufman, “Electrospraying of conducting liquids for monodisperse aerosol generation in 4nm to 1.8μmdiameter range”, J. Aerosol Sci, 26, 6, p963 (1995).
12.M. Volmer, A. Z. Weber, J. Physi. Chem. (Leipzig) 119, p227 (1926)
13.N. H. Fletcher, “Size Effect in Heterogeneous Nucleation”, J. Chem. Phys., 29, p572 (1958).
14.V. K. Lamer and R. Gruen, “A direct test of Kelvin’s equation connecting vapour pressure and radius of curvature”, Trans. Faraday Soc., 48, p410 (1952).
15.S. Twomey, “Experiment test of the Volmer Theory of heterogeneous nucleation”, J. Chem. Phys., 30, p941 (1959).
16.J. A. Koutsky, A. G. Walton, and E. Baer, “Heterogeneous nucleation of water vapor on high and low energy surfaces” Surface Sci., 3, p165 (1965).
17.G. J. Jameson and M. C. Del Cerro, J. Chem. Soc. Faraday Trans. I, “Theory for the equilibrium contact angle between a gas, a liquid and a solid” 72, p883 (1976).
18.G. Saville, “Computer simulation of the lique-solid-vapor contact angle”, J. Chem. Soc. Faraday Trans. II, 73, p1122 (1977).
19.L. R. White,“Deviation from Young’s Equation”, J. Chem. Soc. Faraday Trans. I, 73, p390 (1977).
20.J. E. Juisto, W. C. Kocmond, “Condensation on nonhy- groscopic particles”, J. Rech. Atmos., 3, p19 (1968).
21.B. Y. H. Liu, D.Y. H. Pui, R. L. Mckenzie, J. K. Agarwal, F. G. Pohl, O. Preining, G. Reischl, W. Szymansky and P. E.Wagner, “Measurement of Kelvin equivalent size distribution of well-defined aerosols with particles diameter>13nm”, Aerosol Sci. Technol., 3, p107 (1984).
22.J. Porstendorfer, H. G. Scheibel, F. G. Pohl, O. Preining, G. Reischl and P. E. Wagner, ”Heterogeneous nucleation of water vapor on monodispersed Ag and NaCl particles with diameter between 6 and 18nm”, Aerosol Sci. Technol., 4, p65 (1985).
23.M. Lazaridis, “The effects of surface diffusion and line tension on the mechanism of heterogeneous nucleation”, J. Colloid Interface Sci., 155, p.386 (1993).
24.L. B. Loeb, A. F. Kip and A. W. Einarsson, “On the nature of ion sign preference in C. T. R. Wilson cloud chamber condensation experiments”, J. Chem. Phys., 6, p265(1938).
25.K. C. Russell, “Nucleation on gaseous ions”, J. Chem. Phys., 50, p1809 (1969).
26.R. J. Good, “Surface Entropy and Surface Orientation of Polar Liquids“, J. Phys. Chem., 61, p810 (1957).
27.A. I. Rusanov and F. M. Kuni, ”Reformulation of the thermo- dynamic theory of nucleation of charged particles”, J. Colloid Interface Sci., 100, p264 (1984)
28.D. Stachorska, “Cindensation of supersaturated vapor”, J. Chem. Phys., 42, p1887 (1965)
29.T. Seto, K. Okuyama, L. de Juan and J. F. De LaMora, “Condensation of supersaturation vapors on monovalent and divalent ions of varying sizes”, J. Chem. Phys, 107, p1576 (1997).
30.J. J. Thomson, “Conduction of Electricity Through Gases” 3rd. Ed., 1 (Cambridge University, Cambridge), p320 (1928)
31.C. L. Briant and J. J. Burton, “Molecular dynamics study of the effects of ions on water microclusters”, J. Chem. Phys., 64, p2888(1946)
32.I. Kusaka, Z.G. Wang and J. H. Seinfeld, ”Ion-induced nucleation:A density function approach”, J. Chem. Phys., 102, p913 (1995)
33.C. T. R. Wilson, ”Condensation of Water Vapor in the Presence of Dust-free Air and other Gases”, Phil. Trans. A , 189 , p265 (1897).
34.K. J. Oh, G. T. Gao, and X. C. Zeng,” Nucleation of Water and Methanol Droplets on Cations and Anions: The Sign Preference” , Phy. Rev. Lett., 86, p5085 (2001)
35.B. Alexey, Nadykto, Anas Al Natsheh, Fangqun Yu, K. V. Mikkelsen, and J. Ruuskanen, “ Quantum Nature of the Sign Preference in Ion-Induced Nucleation “, Physical Review Letter , 96, p125701 (2006)
36.A. Jaworek and A. Krupa, “Classification of the modes of EHD spraying”, J. Aerosol Sci., 30, No7, p873 (1999)
37.J. Rosell-Llompart and J. Fernandez De La Mora(1994), “Generation of monodisperse droplets 0.3 to 4 μm in diameter from electrified cone-jets of highly conducting and viscous liquids”, J. Aerosol Sci., 25, 6 , p1093, (1994).
38.M. Cloupeau and B. Prunet-Foch (1994), “Electrohydrody- namic spraying functioning modes:a critical review”, J. Aerosol Sci., 25, 6, p1021, (1994).
39.W. Franklin Smyth, “Trends in analytical chemistry”,18, No.5, p335 (1999)
40.R. P. A. Hartman, D. J. Brunner, D. M. A Camelot, J. C. M. Marijinissen and B. Scarlett, “Electrohydrodynamic atomiz- ation in the cone-jet mode physical modeling of the liquid cone and jet” , J. Aerosol Sci., 30, No.7, p823 (1999)
41.S. L. Kaufman, “Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular” Special Issue on Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn (1999)
42.R. P. A. Hartman, D. J. Brunner, D. M. A.Camelot, J. C. M. Marijnissen and B. Scarlett, “Jet break-up in electrohydrod- ynamic atomization in the con-jet mode”, J. Aerosol Sci., 31, 1, p65, (2000).
43.鄭秀津,”水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝”,碩士論文,國立成功大學化工系,(2002)
44.林佳德,”正丁醇蒸氣在無機TiO2與有機甘露糖奈米微粒上之非均勻相核凝”,碩士論文,國立成功大學化工系,(2004)
45.沈于安,”正丁醇蒸氣在SiO2(6nm-10nm)與鼠李糖(8nm- 25nm) ”微粒上之非均勻相核凝,碩士論文(2005)
46.陳彥宇,”電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝”,碩士論文,國立成功大學化工系,(2003)
47.W. J. Dunning, “Chemistry of the Solid State”, (Academic Press), NY. (1955)
48.M. Volmer,”Kinetic der Phasenbildung”, Verlag Th. Steink- opff, Dresden (1939).
49.K. C. Russell, “Nucleation on gaseous ions”, J. Chem. Phys., 50, p1809 (1969)
50.陶君儒,”水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸鈉次微米微粒上之非均勻相核凝現象”,博士論文,國立成功大學化工系,(2000).
51.C. H. Chen, M. H. J. Emond et al, ”Electrostatic sol-spray deposition of nanostructured ceramic thin films”, J. Aerosol Sci., 30, 7, p959 (1999)
52.L. R. White, “Deviation from Young’s Equation”, J. Chem. Soc. Faraday Trans. I, 73, p390 (1977).
53.蔡聞庭,”正丁醇蒸氣在可溶性D-Mannose與L-Rhamnose次微米微粒上之非均勻相核凝” ,碩士論文,國立成功大學化工系,(2000)
54.C. C. Chen, L. C. Hung, and H. K. Hsu, “Heterogeneous nucleation of water vapor on particles of SiO2, Al2O3, TiO2 and carbon black”, J. Colloid. Interface Sci., 157, p465 (1993)
55.J. L. Katz and B. J. Ostermier, “Diffusion cloud chamber investigation of homogeneous nucleation”, J. Chem. Phys., 47, p478 (1967)
56.許豪仁,”正丁醇蒸氣在味精與乳糖次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系,(1997).
57.Model 3936 SMPS (Scanning Mobility Particle Sizer) Instruction Manual, TSI Inc. (2002).
58.Model 3080, Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
59.Model 3071A Electrostatic Classifier, TSI company
60.Model 3077 Aerosol Neutralizer, TSI company 61.郭明升,”水蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系,(1995)
62.J. L. Katz,”Condensation of a Supersaturated Vapor, I. “The homogenepus Nucleation of the n-Alkanes”, J. Chem. Phys., 52, p4733 (1970).
63.Model 3025A, Ultrafine Condensation particle Counter Instruction Manual, TSI Inc.(2002)
64.Model 3934 SMPS (Scanning Mobility Particle Sizer) Instruction Manual, TSI Inc.
65.H. Stephen, T. Stephen,”Solubilities of Inorganic and Orga- nic Compounds,” p1975, pergamon Press.
66.H. R. Pruppacher, J. D. and Klett, “Microphysics of Clouds and Precipitation”, (Reidel, Holland), p714 (1980).
67.劉旂甫,”水及正丁醇蒸氣在TiO2(6-12nm)與甘露糖(8-25nm)帶電與中性微粒上之非均勻相核凝”, 碩士論文,國立成功大學化工系,(2006)
68.F. F. Abraham and G. M. Pound, “Free Energy of Formation of Droplets from Vapor and Dependence of Surface Tension on Radius,” J. Crystal Growth, 2, p165 (1968)
69.F. F. Abraham and G. M. Pound, “A Reexamination of the Free Energy of Droplets from Vapor and Dependence of Surface Tension on Radius,” J. Crystal Growth, 6, p309 (1970)
70.J. Y. Parlange, ”Free Energy of Formation of Droplets with Curvature Dependent Surface Tension,” J. Crystal Growth, 6, p311 (1970)
71.J. Schmelzer and R. J. Mahnke, ”General Formation for the Curvature Dependence of Droplets and Bubbles,” J. Chem. Soc., Faraday Trans. I, 82, p1413 (1986)
72.J. Schmelzer, ”The Curvature Dependence of Surface – Tension of Small Droplets,” J. Chem. Soc., Faraday Trans. I, 82, p1421 (1986)
73.S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, R. A. R. Chantry, and J. S. Rowlinson, ”A Molecular Dynamics Study of Liquid Drops,” J. Chem. Phys., 81, p530 (1984)