簡易檢索 / 詳目顯示

研究生: 楊聖亮
Yang, Shen-Liang
論文名稱: 透過與光學共振腔或表面電漿子耦合來抑制有機發色團的光氧化
Suppressing the Photo-oxidation of Organic Chromophores through Coupling to a Optical Cavity or Surface Plasmons
指導教授: 陳岳男
Chen, Yueh-Nan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 68
中文關鍵詞: 開放量子系統發色團表面電漿子波恩-馬可夫主方程式階層運動方程式強交互作用
外文關鍵詞: open quantum system, Zeno effect, Born-Markov master equation, hierarchical equations of motion, localized surface plasmon, strong coupling.
ORCID: 0009-0007-6360-840X
相關次數: 點閱:61下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機染料分子因其獨特的光學和電子特性,在各種應用中發揮著至關重要的 作用。這些染料分子具有吸收和放射光的能力,在光能轉化為電信號的過程中有 著關鍵作用。然而,由於其三重態的壽命較長,這增加了它們與環境中的三重態 氧分子發生交互作用的機會,進而導致有機染料分子被永久性破壞並影響整體效 率。本論文探討了透過耦合至單模腔體或表面電漿子來抑制有機染料分子光氧化 的方法。
    第二章介紹了兩種計算開放量子系統演化的方法:波恩-馬可夫主方程式 (BMME) 和階層運動方程式 (HEOM)。BMME 受限於只能描述弱交互作用,而 HEOM 方法可以透過數值方法描述強耦合動力學。
    第三章展示了兩種模型:將染料分子耦合至光學共振腔以及讓染料分子與表 面電漿子產生交互作用。染料分子與其環境之間的強耦合產生了上下極化子本徵 態,為激發單重態提供了新的鬆弛途徑,從而減少了單重態向三重態的轉移,進 一步抑制了氧化。
    在腔體耦合模型中,可以透過調節腔體的耗散和耦合強度來控制氧化速率。 這一機制還涉及量子芝諾效應。與 BMME 相比,HEOM 在模擬強耦合條件下 的動力學時更為準確。
    另一方面,在染料分子與表面電漿子耦合的模型中,我們發現調整共振頻率 和染料分子與奈米金屬球之間的距離會影響抗氧化程度。表面電漿子的光譜密度 展示了來自偶極模態和偽模態的不同貢獻,其相對強度取決於染料分子與奈米金 屬球之間的距離。當距離接近至 2 奈米到 1 奈米時,HEOM 方法與 BMME 的 結果出現差異,這表示 HEOM 提供了更準確的預測。
    我們的理論框架為未來的實驗研究和性能更佳、更耐久的先進有機光電子器 件的開發奠定了基礎。透過詳細的分析和數值模擬,這項研究為設計具有更高耐 久性和功能性的改進光子器件提供了寶貴見解,有助於推動光電子技術的進步。

    Organic dye molecules are crucial in various applications due to their unique optical and electronic properties. They absorb and emit light, playing a key role in converting light energy into electrical signals. However, their long-lived triplet states increase interactions with triplet oxygen molecules, leading to damage and reduced device efficiency. This thesis explores the suppression of photo-oxidation in organic chromophores through coupling to a single-mode cavity or surface plasmons.
    Chapter 2 introduces two approaches for calculating the evolution of an open quantum system: the Born-Markov master equation (BMME) and the hierarchical equations of motion (HEOM). The BMME is restricted to the weak coupling regime, while the HEOM approach can describe strong coupling dynamics through numerical methods.
    Chapter 3 demonstrates two models: coupling a dye molecule to a cavity and coupling a dye molecule to surface plasmons. Strong coupling between the dye molecule and its environment generates upper and lower polaritonic eigenstates, providing new relaxation pathways for the excited singlet state and reducing singlet-to- triplet state transfer, thereby suppressing the oxidation.
    In the cavity coupling model, the oxidation rate can be controlled by adjusting the cavity's dissipation and the coupling strength. This mechanism also involves the quantum Zeno effect. The HEOM approach is more accurate in simulating the dynamics under strong coupling conditions compared to BMME.
    In the surface plasmon coupling model, we find that adjusting resonant frequencies and the distance between dye molecules and nanoparticles can affect the degree of anti- oxidation. The spectral density of the localized surface plasmons (LSPs) exhibits distinct contributions from the dipole and pseudo modes, with their relative strengths depending on the chromophore-metal nanoparticle distance. Differences between HEOM and BMME results become apparent at close distances (2 nm to 1 nm), with HEOM offering more accurate predictions.
    This theoretical framework supports future experimental research and the development of advanced organic optoelectronic devices with improved performance and durability. Through the detailed analysis and numerical simulations, we aim to provide valuable insights for designing more durable and functional photonic devices, advancing optoelectronic technology.

    1 Introduction 1 1.1 Overview 1 1.2 Closed and open quantum systems 2 1.3 Cavity Quantum Electrodynamics 5 2 Approaches to describe the dynamics of open quantum systems 8 2.1 Introduction 8 2.2 Born-Markov master equation 9 2.2.1 Derivation of the Born-Markov master equation 9 2.2.2 Example: a two-level system in thermal equilibrium 13 2.3 Hierarchical equations of motion 16 2.4 Summary 21 3 Suppressing The Photo-oxidation of Organic Chromophores through Coupling to a Single-mode Cavity or Surface Plasmons 23 3.1 Introduction 23 3.2 The properties of Organic chromophores 25 3.3 Suppressing the photo-oxidation in organic chromophores via cavity and surface plasmon coupling 27 3.3.1 Cavity-mediated suppression of the photo-oxidation in organic chromophores 28 3.3.2 Theoretical framework for Chromophore-surface plasmon coupling 38 4 Summary and Outlook 47 Bibliography 49

    [1] Schrödinger, E. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926). URL https://link.aps.org/doi/10.1103/ PhysRev.28.1049.
    [2] Gorini, V., Kossakowski, A. & Sudarshan, E. C. G. Completely positive dynamical semigroups of N-level systems. Journal of Mathematical Physics 17, 821–825 (1976). URL https://doi.org/10.1063/1.522979. https://pubs. aip.org/aip/jmp/article-pdf/17/5/821/19090720/821_1_online.pdf.
    [3] Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946). URL https: //link.aps.org/doi/10.1103/PhysRev.69.37.
    [4] Raimond, J.-M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics 73, 565 (2001).
    [5] Vučković, J. 365Quantum optics and cavity QED with quantum dots in photonic crystals. In Quantum Optics and Nanophotonics (Oxford University Press, 2017). URL https://doi.org/10.1093/oso/9780198768609.003.0008. https://academic.oup.com/book/0/chapter/ 203960976/chapter-pdf/45352961/oso-9780198768609-chapter-8.pdf.
    [6] Vučković, J., Lončar, M., Mabuchi, H. & Scherer, A. Design of photonic crystal microcavities for cavity qed. Phys. Rev. E 65, 016608 (2001). URL https://link.aps.org/doi/10.1103/PhysRevE.65.016608.
    [7] il Kweon, G. & Lawandy, N. Quantum electrodynamics in photonic crystals. Optics Communications 118, 388–411 (1995). URL https://www. sciencedirect.com/science/article/pii/003040189500069K.
    [8] You, J. & Nori, F. Quantum information processing with superconducting qubits in a microwave field. Physical Review B 68 (2003).
    [9] Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
    [10] Blais, A., van den Brink, A. M. & Zagoskin, A. M. Tunable coupling of superconducting qubits. Phys. Rev. Lett. 90, 127901 (2003). URL https: //link.aps.org/doi/10.1103/PhysRevLett.90.127901.
    [11] Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).
    [12] Yu, H., Peng, Y., Yang, Y. & Li, Z.-Y. Plasmon-enhanced light–matter interactions and applications. npj Computational Materials 5, 45 (2019). URL https://doi.org/10.1038/s41524-019-0184-1.
    [13] Cao, S., Xing, Y., Sun, Y., Liu, Z. & He, S. Strong coupling between a single quantum emitter and a plasmonic nanoantenna on a metallic film. Nanomaterials 12 (2022). URL https://www.mdpi.com/2079-4991/12/9/1440.
    [14] He, Z. et al. Principle and applications of the coupling of surface plasmons and excitons. Applied Sciences 10 (2020). URL https://www.mdpi.com/ 2076-3417/10/5/1774.
    [15] Munkhbat, B., Wersa¨ll, M., Baranov, D. G., Antosiewicz, T. J. & Shegai, T. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. Science Advances 4, eaas9552 (2018). URL https://www.science.org/doi/abs/10.1126/sciadv.aas9552.
    [16] Lidar, D. A. Lecture notes on the theory of open quantum systems (2020).1902.00967.
    [17] Rabi, I. I. On the process of space quantization. Physical Review 49, 324–328(1936).
    [18] Rabi, I. I. Space quantization in a gyrating magnetic field. Physical Review 51, 652–654 (1937).
    [19] Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE 51, 89–109 (1963).
    [20] Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information (Cambridge university press, 2010).
    [21] Realization of the cirac–zoller controlled-not quantum gate. Nature 422, 408-411 (2003). URL https://doi.org/10.1038/nature01494.
    [22] Chow, J. M. et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Physical Review Letters 109, 060501 (2012).
    [23] Mabuchi H, D. A. Cavity quantum electrodynamics: coherence in context. Science (New York, N.Y.) (2002).
    [24] Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S. & Kimble, H. J. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000). URL https://www.science.org/doi/abs/ 10.1126/science.287.5457.1447.
    [25] Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001). URL https://link.aps.org/doi/10.1103/RevModPhys.73.565.
    [26] Makhlin, Y., Sch¨on, G. & Shnirman, A. Quantum-state engineering with josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001). URL https://link.aps.org/doi/10.1103/RevModPhys.73.357.
    [27] Plastina, F. & Falci, G. Communicating josephson qubits. Phys. Rev. B 67, 224514 (2003). URL https://link.aps.org/doi/10.1103/PhysRevB.67. 224514.
    [28] Kyaw, T. H., Herrera-Mart´ı, D. A., Solano, E., Romero, G. & Kwek, L.-C. Creation of quantum error correcting codes in the ultrastrong coupling regime. Phys. Rev. B 91, 064503 (2015). URL https://link.aps.org/doi/10.1103/ PhysRevB.91.064503.
    [29] Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S. & Kimble, H. J. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000). URL https://www.science.org/doi/abs/ 10.1126/science.287.5457.1447.
    [30] Averin, D., Ruggiero, B. & Silvestrini, P. Macroscopic Quantum Coherence and Quantum Computing (2001).
    [31] Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, 2007). URL https://doi.org/10.1093/acprof: oso/9780199213900.001.0001.
    [32] Carmichael, H. An open systems approach to quantum optics: lectures presented at the Universit´e Libre de Bruxelles, October 28 to November 4, 1991, vol. 18 (Springer Science & Business Media, 2009).
    [33] Ma, J., Sun, Z., Wang, X. & Nori, F. Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85, 062323 (2012). URL https://link.aps. org/doi/10.1103/PhysRevA.85.062323.
    [34] Tanimura, Y. Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A 41, 6676–6687 (1990). URL https://link.aps.org/doi/10.1103/PhysRevA.41.6676.
    [35] Kuo, P.-C. et al. Kondo qed: The kondo effect and photon trapping in a two-impurity anderson model ultrastrongly coupled to light. Phys. Rev. Res. 5, 043177 (2023). URL https://link.aps.org/doi/10.1103/ PhysRevResearch.5.043177.
    [36] Tanimura, Y. Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A 41, 6676–6687 (1990). URL https://link.aps.org/doi/10.1103/PhysRevA.41.6676.
    [37] Tanimura, Y. & Kubo, R. Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath. Journal of the Physical Society of Japan 58, 101–114 (1989).
    [38] Johansson, J. R., Nation, P. D. & Nori, F. Qutip: An open-source python framework for the dynamics of open quantum systems. Computer Physics Communications 183, 1760–1772 (2012).
    [39] Lambert, N. et al. Qutip-bofin: A bosonic and fermionic numerical hierarchicalequations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. Physical Review Research 5, 013181 (2023).
    [40] Huang, Y.-T. et al. An efficient julia framework for hierarchical equations of motion in open quantum systems. Communications Physics 6, 313 (2023).
    [41] Kra¨mer, S., Plankensteiner, D., Ostermann, L. & Ritsch, H. Quantumoptics. jl: A julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018).
    [42] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chemical reviews 110, 6595–6663 (2010).
    [43] Qin, P. et al. Design of an organic chromophore for p-type dye-sensitized solar cells. Journal of the American Chemical Society 130, 8570–8571 (2008). URL https://doi.org/10.1021/ja8001474.
    [44] Etienne, T. et al. All-organic chromophores for dye-sensitized solar cells: A theoretical study on aggregation. Dyes and Pigments 101, 203–211 (2014).
    [45] Khalid, M. et al. Exploration of efficient electron acceptors for organic solar cells: rational design of indacenodithiophene based non-fullerene compounds. Sci. Rep. 11 (2021). URL https://doi.org/10.1038/s41598-021-99254-4.
    [46] Choi, D. K. et al. Highly efficient, heat dissipating, stretchable organic lightemitting diodes based on a MoO3/au/MoO3 electrode with encapsulation. Nat. Commun 12 (2021). URL https://doi.org/10.1038/s41467-021-23203-y.
    [47] Zou, S.-J. et al. Recent advances in organic light-emitting diodes: toward smart lighting and displays. Mater. Chem. Front. 4, 788–820 (2020).
    [48] Minotto, A. et al. Towards efficient near-infrared fluorescent organic lightemitting diodes. Light Sci. Appl. 10 (2021). URL https://doi.org/10.1038/ s41377-020-00456-8.
    [49] Chang, J.-F. et al. Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture. Optics Express 28, 39781–39789 (2020).
    [50] Xu, S., Liu, H.-W., Huan, S.-Y., Yuan, L. & Zhang, X.-B. Recent progress in utilizing near-infrared j-aggregates for imaging and cancer therapy. Materials Chemistry Frontiers 5, 1076–1089 (2021).
    [51] Bera, M. K., Pal, P. & Malik, S. Solid-state emissive organic chromophores: design, strategy and building blocks. J. Mater. Chem. C 8, 788 (2020). URL http://dx.doi.org/10.1039/C9TC04239C.
    [52] Sun, B. et al. Ultra-narrowband photodetector with high responsivity enabled by integrating monolayer j-aggregate organic crystal with graphene. Advanced Optical Materials 9, 2100158 (2021).
    [53] Wang, X. et al. Organic phosphors with bright triplet excitons for efficient x-ray-excited luminescence. Nat. Photon 15, 187–192 (2021). URL https: //doi.org/10.1038/s41566-020-00744-0.
    [54] Li, L. et al. Photodynamic therapy based on organic small molecular fluorescent dyes. Chinese Chemical Letters 30, 1689–1703 (2019).
    [55] Felicetti, S. et al. Photoprotecting uracil by coupling with lossy nanocavities (article). The Journal of Physical Chemistry Letters 11, 8810–8818 (2020).
    [56] Consales, C., Merla, C., Marino, C. & Benassi, B. Electromagnetic fields, oxidative stress, and neurodegeneration. International journal of cell biology 2012, 683897 (2012).
    [57] Hale, G., Jackson, J., Shmakova, O., Lee, T. & Halas, N. Enhancing the active lifetime of luminescent semiconducting polymers via doping with metal nanoshells. Applied Physics Letters 78, 1502–1504 (2001).
    [58] D’Souza, F. & Ito, O. Strategies for reducing photo-oxidative damage in organic dye-sensitized solar cells. Chemical Communications 47, 4303–4308 (2011). URL https://doi.org/10.1039/c0cc05129h.
    [59] Korzdorfer, T., Sears, J. S., Sutton, C. & Bredas, J.-L. Long-range corrected hybrid functionals for -conjugated systems: Dependence of the range-separation parameter on conjugation length. The Journal of Chemical Physics 135, 204107 (2011). URL https://doi.org/10.1063/1.3656852.
    [60] Ostroverkhova, O. Organic optoelectronic materials: Mechanisms and applications. Chemical Reviews 116, 13279–13412 (2016). URL https://doi.org/ 10.1021/acs.chemrev.6b00127.
    [61] Jiang, Y. et al. Organic solid-state lasers: a materials view and future development. Chemical Society Reviews 48, 1865–1886 (2019). URL https: //doi.org/10.1039/c8cs00706b.
    [62] Bricks, J. L., Slominskii, Y. L., Panas, I. D. & Demchenko, A. P. Fluorescent j-aggregates of cyanine dyes: basic research and applications review. Methods and Applications in Fluorescence 6, 012001 (2017). URL https://dx.doi. org/10.1088/2050-6120/aa8d0d.
    [63] Chynwat, V. & Frank, H. A. The application of the energy gap law to the s1 energies and dynamics of carotenoids. Chemical Physics 194, 237–244 (1995). URL https://doi.org/10.1016/0301-0104(95)00190-q.
    [64] Niu, Y., Peng, Q., Deng, C., Gao, X. & Shuai, Z. Theory of excited state decays and optical spectra: Application to polyatomic molecules. The Journal of Physical Chemistry A 114, 7817–7831 (2010). URL https://doi.org/10. 1021/jp101568f.
    [65] Marian, C. M. Spin–orbit coupling and intersystem crossing in molecules. Wiley Interdisciplinary Reviews: Computational Molecular Science 2, 187–203 (2012). URL https://doi.org/10.1002/wcms.83.
    [66] Penfold, T. J., Gindensperger, E., Daniel, C. & Marian, C. M. Spin-vibronic mechanism for intersystem crossing. Chemical Reviews 118, 6975–7025 (2018). URL https://doi.org/10.1021/acs.chemrev.7b00617.
    [67] Baryshnikov, G., Minaev, B. & ˚Agren, H. Theory and calculation of the phosphorescence phenomenon. Chemical Reviews 117, 6500–6537 (2017). URL https://doi.org/10.1021/acs.chemrev.7b00060.
    [68] Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nature Reviews Materials 5, 869–885 (2019). URL https: //doi.org/10.1038/s41578-019-0152-x.
    [69] Widengren, J., Chmyrov, A., Eggeling, C., Lo¨fdahl, P.-˚A. & Seidel, C. A. M. Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. The Journal of Physical Chemistry A 111, 429–440 (2007). URL https://doi.org/10.1021/jp0646325. PMID: 17228891, https://doi.org/ 10.1021/jp0646325.
    [70] Vogelsang, J. et al. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angewandte Chemie International Edition 47, 5465–5469 (2008). URL https://onlinelibrary.wiley.com/doi/abs/ 10.1002/anie.200801518.
    [71] Mondal, P. P. Minimizing photobleaching in fluorescence microscopy by depleting triplet states. Appl. Phys. Lett. (2008).
    [72] Lill, Y. & Hecht, B. Single dye molecules in an oxygen-depleted environment as photostable organic triggered single-photon sources. Applied physics letters 84, 1665–1667 (2004).
    [73] Deschenes, L. A. & Bout, D. A. V. Single molecule photobleaching: increasing photon yield and survival time through suppression of two-step photolysis. Chemical physics letters 365, 387–395 (2002).
    [74] Renn, A., Seelig, J. & Sandoghdar, V. Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level. Molecular Physics 104, 409–414 (2006).
    [75] Li, L.-W., Kooi, P.-S., Leong, M.-S. & Yee, T.-S. Electromagnetic dyadic green’s function in spherically multilayered media. IEEE Transactions on Microwave Theory and Techniques 42, 2302–2310 (1994).
    [76] Kuo, P.-C. et al. Collectively induced exceptional points of quantum emitters coupled to nanoparticle surface plasmons. Phys. Rev. A 101, 013814 (2020). URL https://link.aps.org/doi/10.1103/PhysRevA.101.013814.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE